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Abstract

The origin of large but rare cascades that are triggered by small initial shocks is a problem

that manifests itself in social and natural phenomena as diverse as cultural fads and innovations [1-

3], social movements [4,5], and cascading failures in large infrastructure networks [6-8].  Here we

present a possible explanation of such cascades in terms of a network of interacting agents whose

decisions are determined by the actions of their neighbors according to a simple threshold rule.

We identify conditions under which the network is susceptible to very rare, but very large

cascades and explain why such cascades may be difficult to anticipate in practice.

How is it that small initial shocks can cascade to affect or disrupt large systems

that have proven stable with respect to similar disturbances in the past?  Why did a

single, relatively inconspicuous, power line in Oregon trigger a massive cascading failure

throughout the western US and Canada on 10 August 1996 [6], when similar failures in

similar circumstances did not do so in the past?  Why do some books, movies and albums

emerge out of obscurity, and with small marketing budgets, to become popular hits [3],

when many apparently indistinguishable efforts fail to rise above the noise?  In this

paper, we propose a possible explanation for this general phenomenon in terms of binary-

state decision networks.
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Our approach is motivated by considering a population of individuals each of

whom must decide between two alternative actions, but whose decisions depend on those

of their immediate acquaintances. In social and even economic systems, decision makers

often pay attention to each other because they have limited knowledge of the problem,

such as when deciding which movie to see or restaurant to visit, or limited ability to

process the available information [2].  In other situations, the nature of the problem itself

provides incentives for coordinated action, as is the case with social dilemmas [4] or

competing technologies like personal computers or VCR's [1].

Although the detailed mechanisms involved in binary decision problems can vary

widely across applications [1-5], the essence of many binary decision problems can be

captured by the following threshold rule: An individual v  adopts state 1 if at least a

critical fraction v  of its kv  neighbors are in state 1, else it adopts state 0.  In fact, when

regarded more generally as a change of state, not just a decision, this rule is relevant to an

even larger class of problems, including cascading failures in engineered networked

systems such as power transmission networks [6,7] or the Internet [9-11].  Although

motivated differently, the threshold rule is similar in nature to a family of models that are

familiar to physicists, including random-field Ising models [12], models of spreading

activation [13], self-organized criticality [7], percolation [14], and majority-vote cellular

automata [15]. The model analyzed here, however, is distinguished from this literature in

part because both the distribution of neighbors and also thresholds are heterogeneous and

allowed to vary, and in part because the threshold rule is fractional.  The latter feature

implies that an individual's decision or change of state depends not only on its threshold

and the states of its neighbors, but also upon its number of neighbors; hence it is the

relationship between the two distributions--neighbors and thresholds--that is important

for the dynamics.
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Specifically, we consider a network (mathematically, a graph) of size N, in which

each vertex (node) is connected to k  other vertices with probability pk  and the average

number of neighbors per vertex (degree) is denoted z . The population is initially all-off

(state 0) and is perturbed at time t = 0 by a small fractionΦ0 << 1 of vertices that are

switched on (state1).  The population then evolves at successive time steps with all

vertices updating their states according to the threshold rule above [16].  The thresholds

v  are assigned at random according a distribution f ( )  defined on the unit interval and

normalized such that f ( )d
0

1

∫ =1.  When N → ∞  and each node is connected equally to

all others z = N −1( ) , the dynamics of the model reduce to a one-dimensional map given

by Φ t = f ( )d
0

Φ t−1

∫ . From this map, it follows that for a smooth, unimodal distribution

with f 0( ) = f 1( ) = 0, the system can have only three equilibrium states: all-on; all-off;

and an unstable, intermediate equilibriumΦ* .  As long asΦ0 < Φ*   , the initial

perturbation will always die out, implying that arbitrarily small shocks can never cause

large cascades in completely connected systems [17].  Many real networks, including

those discussed above, are very sparsely connected in that the average degree is much

less than the size of the system z << N( ) [18-20]. Here we address the relationship

between the sparseness of a network and its vulnerability to cascades.

Our approach concentrates on two quantities: 1) the probability that a cascade will

be triggered by a single node, or small seed of nodes; and 2) the expected size of a

cascade once it is triggered.   In the absence of any known geometry for the problem, a

natural first choice of model for an interaction network is an undirected random graph

[21], with N  vertices and specified degree distribution pk .  In any sufficiently large

random graph with z << N , no vertex neighboring the initial seed will be adjacent to

more than one seed member. Hence the only way in which the seed can grow is if at least

one of its immediate neighbors v  has a threshold such that v ≤1 kv , or equivalently has
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degree kv ≤ Kv = 1 v  .  We call vertices that are unstable in this one-step sense,

vulnerable.  Clearly, the more vulnerable vertices exist in the network, the more likely it

is that an initial seed or shock will grow.  But the extent of its growth, and hence the

vulnerability of the network as a whole, depends largely on its global structure.

Specifically, in an infinite network, cascades can be triggered with finite probability by a

finite seed only when the network contains a percolating vulnerable cluster (consisting

solely of vulnerable vertices).

The above condition, which we call the cascade condition, has the considerable

advantage of reducing a complex dynamics problem to a static graph-theoretic problem

that can be solved using the machinery of generating functions [22,23]. We proceed by

defining the generating function of vertex degree:

G0 x( ) = k pkx
k

k∑ , where k =
1 k = 0

F 1 k( ) k > 0
 
 
 

and F( ) = f ( )d
0∫ . From this function, we can extract all the moments of the degree

distribution of vulnerable vertices by evaluating its derivatives at x = 1; for example, the

vulnerable fraction of the population is P = G0 1( )  and the average degree of vulnerable

vertices is ′ G 0 1( ).  Next, we define the corresponding generating function  G1 x( ) for

vertices that we reach by following a randomly chosen edge.  Because an edge arrives at

such a vertex with probability proportional to its degree k , and we must discount the

edge we came in along, the correctly normalized generating function is:

G1 x( ) =
k k pkx

k −1

k∑
kpkk∑ =

′ G 0 x( )
z

.

In addition, let H0 x( ) be the generating function for the vulnerable cluster size

distribution; that is, H0 x( ) generates the probability that a randomly chosen vertex will
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belong to a vulnerable cluster of size n .  Finally , let H1 x( ) generate the cluster size

distribution for vertices that we arrive at by following a random edge.  It follows that

H1 x( ) satisfies the self-consistency equation H1 x( ) = 1− G1 1( ) + xG1 H1 x( )( ), from which

H0 x( ) can be computed according to H0 x( ) = 1− P + xG0 H1 x( )( ) .

The quantity of primary importance to the problem of cascades is the average

vulnerable cluster size n = ′ H 0 1( ) as this is the quantity that diverges at percolation.

Substituting the expressions for H0 x( ) and H1 x( ) above, we find that

n = P + ′ G 0 1( )( )2
z − ′ ′ G 0 1( )( ) , which diverges at the critical point defined by:

′ ′ G 0 1( ) = k k −1( ) k pk =
k∑ z (1).

When ′ ′ G 0 1( ) < z , all vulnerable clusters in the network are small, hence we do not expect

to see any cascades.  But when Equation 1 is satisfied, many vulnerable clusters become

connected to form a percolating vulnerable cluster, from which it follows according to

our claim above that cascades should be possible.  We emphasize that, unlike standard

percolation, k  is a function both of the degree and threshold distributions; a feature that

has important consequences for cascades.

We illustrate the cascade condition for the special case of a random graph, in

which any pair of vertices is connected with probability p = z N [21].  Further, we assume

initially that all vertices have the same threshold c ; that is, f ( ) = − c( ).  A

characteristic of such uniform random graphs is that pk = e− zz k k!, the Poisson

distribution, in which case our cascade condition (Equation 1) reduces to

zQ Kc −1, z( ) =1, where Kc = 1 c   and Q a, x( )  is the incomplete gamma function.

Figure 1 expresses the cascade condition graphically as a boundary in the c, z( ) phase

diagram (solid line) and compares it to the region (outlined by solid circles) in which

cascades are observed in the full dynamical simulation.  Because the simulated system is
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finite, the predicted and actual boundaries of the cascade window do not agree perfectly,

but they are very similar; in particular, both display a lower and an upper boundary.  That

is, for each value of c , the system has two critical points, as a function of the average

degree z , at which the characteristic time scale of the dynamics diverges (see Figure 2a).

The lower critical point is similar to the standard percolation transition for random graphs

that occurs when the average connectivity exceeds z = 1 [21,22].  But the upper critical

point is different: Here, the system has become so highly connected that most vertices are

stable, and the percolating vulnerable cluster is ultimately lost.

To understand the nature of the upper transition, we solve exactly for the

fractional size Sv  of the vulnerable cluster inside the cascade window.  From the

definition of the generating functions, Sv = 1 − H0 1( ) = P − G0 s( ), where s satisfies

s = 1− G1 1( ) + G1 s( ).  In the special case of a uniform random graph, with homogeneous

thresholds, we obtain Sv = Q Kc +1, z( ) − ez s−1( )Q K c + 1, zs( ) , in which s satisfies

s = 1− Q K c,z( ) + ez s−1( )Q Kc, zs( ) .  We contrast this expression with that for size of the

entire connected component of the graph, S =1 − e−zS  [22], which is equivalent to

allowing Kc → ∞.  In Figure 2b we show the exact solutions for both Sv  (dashed line)

and S (solid line) for the case of c = 0.2 K c = 5( ) , along with the relevant order

parameters of the dynamics: the probability and expected size of cascades.  It is clear that

while the probability of cascades (open circles) is approximated by Sv , the average size

of the cascades that are actually triggered (solid circles) is given instead by S . The reason

is that once a cascade has commenced, vertices can have multiple neighbors in the on

state, and so even those vertices that were deemed stable with respect to the initial shock

can be toppled, allowing the cascade to occupy the entire connected component of the

graph.



7

The phase transition at the upper boundary of the cascade window thus exhibits a

dual nature, depending on which order parameter one observes.  The probability of a

cascade increases continuously, in a second-order phase transition [24], as the critical

point is approached from above, but the expected cascade size jumps discontinuously

from zero to one in the manner of a first-order transition, once cascades become possible.

In this region cascades, like fads [3], will occur only rarely and thus unpredictably, but

when they do occur they will be extremely large .  The unpredictability of cascades has a

second, temporal, aspect: Instead of many potential innovations, only a few of which

actually succeed, consider a single innovation that is introduced repeatedly until it

cascades.  Now there are two time scales to the problem: the introduction period Ti, given

by the inverse of cascade frequency, and the adoption period Ta  (from Figure 2a).  From

Figure 3 it is clear that near the critical points, the ratio Ti Ta  can vary rapidly over

multiple orders of magnitude (for sufficiently large N ), implying that even a potentially

successful innovation could remain unnoticed for a long time before eventually

cascading.  Finally, when the connectivity of the network places it inside the cascade

window but to the right of the peak in Figure 2b, then any increase in the connectivity has

an ambiguous effect on the system's stability.  On the one hand, cascades will become

less frequent; but on the other hand, when they do occur, they will be larger.  Hence the

system becomes at once more robust, yet also more fragile; a feature thought to be

endemic of complex, engineered systems [8].

These qualitative results are quite general within the class of random networks,

applying to arbitrary distributions both of thresholds f ( )  and degree pk  . Variations in

either distribution can affect the vulnerability of the system considerably, as is

demonstrated in Figure 1.  Outside the original cascade window (solid line) lie two

windows corresponding to threshold distributions f ( )  that are normally distributed with

mean c  and increasing standard deviation .  In this case, increased heterogeneity of
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thresholds causes the system to be less stable.  The dashed line inside the original

window represents a homogeneous threshold distribution, but here pk  is distributed

according to pk = Ck− e−k k > 0( ), where C, ,  are constants.  This class of power-

law random graphs has attracted much recent interest [9-11,19,20] as a model of many

real networks, ranging from social networks to the Internet and the World Wide Web.

The power law distribution has the effect that the mean connectivity z  is dominated by

the presence of a few highly connected nodes, while many nodes have only one edge.

Because Equation 1 has the effect of excluding both these extremes from the vulnerable

cluster, random graphs with power law degree distributions tend to be much less

vulnerable to random shocks than uniform random graphs with the same z , a point

observed elsewhere [9-11] with respect to the random deletion of nodes.  Hence, unlike

thresholds, increased heterogeneity of  vertex degree appears to make the system more

stable.

A significant theoretical challenge is to extend the results of this paper to include

networks that exhibit local structure, such as clustering [18], which in general violates the

assumption that vertices initially can have at most one neighbor in the on state.  One

possible extension is to assume that individuals are assigned to small groups, within

which interactions are dense, and that the groups in turn interact randomly.  This

approximation has the effect of replacing z  in the above analysis, with the density zg  of

group interactions, leaving the model qualitatively unchanged, but making cascades

generally more likely; a conclusion supported by simulations.

In conclusion, we have analyzed a simple model of networks of individuals

making binary decisions as a function of the decisions of their neighbors.  The results

presented here are highly suggestive of phenomena observed in real-world examples of

cultural fads and technological innovations: not only are the successes hard to separate a-
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priori, from the failures, but some cascades happen almost instantaneously while some,

like cellular pagers or the 1989 Leipzig parades [4], exhibit latency periods that are

decades long.  We hope that the introduction of this simple framework will stimulate

theoretical and empirical efforts to analyze more realistic network models, and obtain

comprehensive data on the frequency, size and time scales of cascades in real networked

systems.
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FIGURES

Figure 1. Cascade windows for the threshold model.  The solid line encloses the region of

the c, z( ) plane in which the cascade condition (Equation 1 in text) is satisfied for a

uniform random graph with a homogenous threshold distribution f ( ) = − c( ).  The

solid circles outline the region in which global cascades occur for the same parameter

settings in the full dynamical model for N =10,000 (averaged over 100 random single

node perturbations).  The long dashes outline the equivalent cascade window for a

random graph with a degree distribution that is a power law with exponent  and

exponential cut-off 0 , as described in the text.  The dash-dot line and short dashed line,

represent cascade windows for uniform random graphs, but where the threshold

distributionsg( ) are normally distributed with mean c  and standard deviation = 0.05

(dash-dot) and = 0.1 (short dashes) respectively.

Figure 2.  Two cross sections of the solid cascade window from Figure 1, at c = 0.2 .  (a)

The average time required for a cascade to terminate diverges at both the lower and upper

boundaries of the cascade window.  (b)  The dashed line represents the fractional size of

the largest vulnerable component, and the open circles represent the frequency of

cascades that result from a single site being switched on at t = 0 in the full dynamical

model (averaged over 1000 random perturbations for N =10,000).  The solid (upper) line

is the average fractional size of the entire connected component of the random graph, and

the solid circles correspond to the average size of global cascades in the dynamical

model, when they are triggered. Hence rare but large cascades occur at the upper

boundary.

Figure 3. Ratio of latency period Tl to adoption period Ta  for a single innovation that is

repeatedly introduced at regular intervals until it triggers a cascade. The ratio is small

inside the cascade window, indicating rapid adoption, but diverges at the boundaries.
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