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Abstract

We review power laws in financial economics. This is a chapter
from a preliminary draft of a book called “Beyond equilibrium and
efficiency”. While some of the discussion is specific to economics, most
of it applies to power laws in general – the nouns may change, but the
underlying questions are similar in many fields. This draft is still pre-
liminary and not entirely finished – comments at any level are greatly
appreciated.

Unfinished manuscript! Contains omissions and typos. Read
at your own risk. Comments are appreciated.
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1 Introduction

There is good evidence for the presence of power law distributions in many
if not most high frequency economic variables, such as returns, order flow,
volume, and liquidity. They are an important regularity of many facets of
financial markets that equilibrium theories have so far failed to illuminate.
To quote Ijiri and Simon, “.. on those occasions when a social phenomenon
appears to exhibit some of the same simplicity and regularity of pattern as
is seen so commonly in physics, it is bound to excite interest and attention”
[39]. Despite the growing empirical evidence for the existence of power laws
and their practical importance, the existence of power laws has received little
attention from financial economists. Many aspects of the subject are widely
misunderstood. For this reason, and because there is no good comprehensive
review of this subject, we devote an entire chapter to it.

Crudely speaking a power law is a relation of the form f(x) = Kxα,
where x > 0 and K and α are constants. Power laws can appear in many
different contexts. The most common are that f(x) describes a distribution
of random variables or the autocorrelation function of a random process, but
power laws can appear in many different contexts. Although this continues
to be controversial, there is now a large body of evidence suggesting that
many properties of financial markets are power laws. This has important
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Figure 1: When a power law is plotted in double logarithmic scale, it be-
comes a straight line. In general one expects power law scaling only as an
asymptotic property; even if a pure power law is modified by a slowly varying
function which alters the scaling at any finite x, but becomes unimportant
in the limit, it is still called a power law.

practical consequences for risk management, volatility forecasting, statistical
estimation, and derivative pricing. It is also conceptually important because
it suggests a different emphasis in economic modeling. While power laws
may be consistent with equilibrium theory, it has so far failed to address
them.

The property that makes power laws special is that they describe scale
free phenomena. To see why, suppose a variable undergoes a scale trans-
formation of the form x → cx. If f(x) = Kxα, it is transformed as
f(x) → Kcαxα = cαf(x). Changing the scale of the independent vari-
able thus preserves the functional form of the solution, but with a change
in its scale. Power laws are a necessary and sufficient condition for scale
free behavior. To see this, consider the condition for scale invariance, which
can be written as a functional equation of the form f(cx) = K(c)f(x). For
any constant c > 0, there exists another constant K(c) > 0 such that there
is a solution f(x) with x > 0. A power law is the only1 possible solution.
Scale free behavior has important scientific implications because it strongly
suggests that the same mechanism is at work across a range of different
scales.

A power law is just a linear relationship between logarithms, of the form

log f(x) = −α log x+ logK.

We give an example in Figure 1. The quick and dirty test for a power law is
to simply plot the data in double logarithmic scale and look for a straight
line. The scaling exponent α can be determined by measuring its slope. But
when power law scaling is only approximate and data is limited, this can
yield ambiguous results. More rigorous statistical testing procedures also
have problems. This has caused considerable debate, as discussed in Section
??.

The crude definition of a power law given above is misleading because
power law scaling allows for asymptotically irrelevant variations, such as

1f(x) = 0 or f(x) = 1 are also scale-invariant solutions, but these are just power laws
with exponents α = −∞ or α = 0.
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logarithmic corrections. Confusion about this has led to a great deal of
misunderstanding in the literature, so it is worth spending some time to
discuss this carefully.

The notion of a power law as it is used in extreme value theory [27] is an
asymptotic scaling relation. Two functions f and g have equivalent scaling,
f(x) ∼ g(x), in the limit2 x∞ if

lim
x→∞

L(x)f(x)
g(x)

= 1, (1)

where L(x) is a slowly varying function. A slowly varying function L(x)
satisfies the relation

lim
x→∞

L(tx)
L(x)

= 1. (2)

for any t > 0. Examples of slowly varying functions are the constant function
and the logarithm.

A power law is defined as any function satisfying f(x) ∼ xα. Under
this definition, a power law is not a single function, but rather the family
of functions that are asymptotically equivalent to a power law. The slowly
varying function L(x) can be thought of as the deviation from a pure power
law for finite x. For f(x) = L(x)x−α, taking logarithms of both sides and
dividing by log x gives log f(x)/ log x = −α+logL(x)/ log x. Providing L(x)
is a slowly varying function, in the limit x→∞ the second term on the right
goes to zero, and this reduces to log f(x)/ log x = −α. See Figure ??.

In a similar vein, for any t > 0 a regular function is one that satisfies

lim
x→∞

h(tx)/h(x) = χ(t), (3)

where χ(t) is positive and bounded. Unlike a slowly varying function,
under a change of scale a regular function is not asymptoticaly invari-
ant. The connection to power laws becomes clear by writing h(tsx)/h(t) =
(h(tsx)/h(tx))(h(tx)/h(x)). This implies that χ(ts) = χ(t)χ(s), which has
the solution χ(t) = t−α. In the limit x → ∞, any function of the form
L(x)x−α satisfies this relation as long as L(x) is slowly varying, making it
clear that power laws are regular functions.

To physicists, the apparent prevalence of power laws in financial markets
is an important modeling clue. Explaining power laws in financial markets
is important for its own sake, and it may also have broader consequences

2It possible to use any limit, but unless otherwise specified, for convenience we will
assume the limit x→∞, which is the most relevant one for finance.
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for economic theory. If an exogenous properties of the market such as the
information arrival rate is a power law, under a standard equilibrium model
this can cause market properties such as the distribution of price changes to
be a power law. However, there is considerable evidence that many power
laws are endogenous properties of markets. It is not clear whether this is
compatiable with equilibrium. Providing a proper endogenous explanation
of power laws may force us to develop nonequilibrium theories.

The importance and ubiquity of scale free behavior was originally pointed
out by Mandelbrot [61, 62, 63]. He coined the word “fractals” to describe the
nondifferentiable geometric objects that satisfy power law scaling when α is
not equal to an integer. Fractals have the property that, by using an appro-
priate magnifying glass, one sees the same behavior across different scales
(in length, time, price, or any other relevant variable with a scale attached
to it). Mandelbrot demonstrated that fractals are ubiquitous in nature,
describing phenomena as diverse as coastlines, clouds, floods, earthquakes,
financial returns, and fundamental inaccuracies in clocks. For coastlines
or clouds there is a power law relationship between size and measurement
resolution. The coastline of Brittainy wiggles on all scales, is longer when
measured accurately than when measured crudely, and increases as a power
law as a function of measurement resolution. Similarly, clouds have soft
boundaries, so that the volume of what one would consider to be a cloud
depends on a water concentration threshold. The volume of clouds increases
as a power law, inversely with this threshold. For earthquakes, floods, or
financial returns, the probability of a large event greater than a given size
decreases as a power law. For clocks ranging from hour glasses to lasers, the
fundamental source of inaccuracies is a random process that is correlated in
time, with a correlation function that decays as a power law (this is called
a long-memory process – see Section 3). Given the previously prevailing
assumption that nature should generally be described by smooth functions,
the realization that so many diverse phenomena could be modeled based on
non-differentiable geometry was a major shift in worldview3.

Of course, the assumption of power law scaling is always just an approx-
imation, which is only valid across a given range. For most examples there
are cutoffs at large and small scales where the scaling assumption ceases to
be valid. But when it applies, the power law assumption parsimoniously

3From a certain point of view, all of the examples given above can be related to sampling
from a power law distributed random variable. One can randomly generate a coastline,
for example, by constructing a curve whose increments are power law distributed variables
with random orientations. As we demonstrate in Section 6.9, power laws are associated
with a lack of differentiability
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captures an important regularity.
We begin our exposition of power laws by carefully defining power law

distributions of random variables and discussing their properties. We then
introduce the closely related phenomenon of long-memory random processes.
To explain why power laws are important in economics, we list some of the
many examples where power laws are claimed to occur, and use important
economic problems such as clustered volatility, risk control, statistical esti-
mation, and hyperbolic discounting to illustrate their practical importance
in finance. We then address some of the controversy surrounding empirical
work on power laws, and give a response to recent criticism [26, 43]. In
order to give a better understanding of where power laws come from, and
in order to illustrate the kind of models that can explain them, we present
a review of mechanisms for generating power laws. Finally we discuss the
implications for economic theory.

2 Power law distributions of random variables

Perhaps the most common context in which power laws occur is as prob-
ability distributions of random variables. A power law distribution is an
example of what is often called a fat tailed distribution. The interchange-
able terms “fat tails”, “heavy tails”, and “long tails” are loose designations
for any distribution whose measure at extreme values is greater than that of
a “thin-tailed” reference distribution, typically a normal or an exponential.
The fact that many economic data sets are described by fat-tailed distribu-
tions is not controversial. In fact, as we explain more precisely below, any
distribution with “sufficiently fat tails” is a power law distribution. Thus,
the debate concerning power laws is reduced to the question of just how fat
the tails of economic data sets really are.

To make the effect of fat tails more tangible, in Table 1 we compare a
normal distribution to a power law, in this case a Student’s t-distribution
with three degrees of freedom. To calibrate this to a distribution of price
movements, we choose both distributions to have the same standard devia-
tion of 3%, which is a typical figure for daily price movements in a financial
market. This table makes it clear that there is little difference in the typical
fluctuations one expects to observe every ten or one hundred days, but the
typical 1/1000 event is twice as large for a power law and the 1/10,000 event
is three and a half times as large. The difference is something a risk manager
should take seriously. This becomes even more dramatic when looked at the
other way: The probability of observing a fluctuation of 21% (the size of
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Probability 0.9 0.99 0.999 0.9999 . . . 10−16

Normal 3.8 7.0 9.2 11 . . . 21
Student 2.8 7.8 17.7 38.5 . . . XXX

Table 1: A comparison of risk levels for a normal vs. a power law tailed
distribution. Student’s t distribution with three degrees of freedom, which
has a tail exponent α = 3, is chosen as a proxy for daily price returns. Both
distributions are normalized so that they have a standard deviation of 3%,
a typical value for daily price fluctuations. We assume that returns on suc-
cessive days are independent. The top row gives the probability associated
with each quantile, and the values in the table are the size of the typical
events for that quantile, in percent. Thus, the first column corresponds to
typical daily returns that one would expect to see every ten days, and the
last column events one would expect every 10,000 days, i.e. every 40 years.

the famous negative S&P return on October 19, 1987) under the normal
hypothesis is less than 10−16, whereas the probability under the power law
distribution is 0.08%. Under the normal distribution it is essentially impos-
sible that this event could ever have occurred, whereas under a power law
distribution such an event is to be expected.

For probability distributions it is standard to express the scaling in terms
of the associated exponent of the cumulative distribution P (x > X) ∼ X−α,
where α > 0 is called the tail exponent. Assuming it exists, from elementary
calculus the corresponding probability density function p (defined as P (x >
X) =

∫ X
0 p(x′)dx′) scales as p(x) ∼ x−(α+1). The fact that the scaling

exponent of the density function is equal to α+ 1 is a rule we will use often.
For convenience we will assume x > 0; the negative values of a double-sided
distribution are treated by taking absolute values. In general the positive
and negative sides of an asymmetric distribution can obey different power
laws, and a distribution might be an asymptotic power law with different
values of α in two different limits4, e.g. x→ 0 and x→∞.

The tail exponent α has a natural interpretation as the cutoff above
which moments no longer exist. This is because for a density function with
power law scaling p(x) ∼ x−(α+1), the mth moment scales as

γ =
∫
xmp(x)dx ∼

∫
xmx−(α+1)dx. (4)

γ is finite when m < α and it is infinite otherwise. The tail exponent thus
4A good example is the double Pareto distribution, discussed in Section 6.5.

7



provides a single number summary of “how fat” the tails are – the lower
the exponent, the fatter the tails, and the lower the cutoff above which the
moments of the distribution no longer exist. This result holds generally for
power laws – slowly varying functions cannot change whether or not a given
moment exists. In fact, as we will make precise a bit later, all well-behaved
distribution functions with moments that do not exist are power laws.

This is clearly vitally important: When a moment doesn’t exist, any
attempt to compute a statistic based on it will fail to converge to a limiting
value, even with an infinite amount of data. As we discuss later, if α < 2
then the variance doesn’t exist, the central limit theorem no longer applies,
and sums no longer converge to a normal distribution. If α ≤ 1, the mean
does not exist. For this reason there is no such thing as an “average flood”
- it is only possible to measure flood likelihoods in terms of quantiles, as in
the statement “this is a 100 year flood”.

The first power law (in any discipline) was discovered by Pareto, who
in his book Cours d’Economie Politique noted that “in all countries and
at all times the the extreme distribution of income and wealth follows a
power law behavior”. In his honor the pure power law distribution P (x) =
Kx−α is often called the Pareto distribution. In Pareto’s statement the
word extreme is important, as it is typically only the tail of the wealth or
income distribution that is a power law – the main body of the distribution
is usually better described by a log-normal or exponential distribution. The
problem of separating the tail and the body of power law distributions has
created controversy ever since.

For continuous random variables it is particularly important to stress
the asymptotic nature of power laws. For a continuous variable defined on
[0,∞] there is no such thing as a “pure” power law distribution across the
entire interval. This is easily seen by contradiction: Suppose there existed a
density function of the form p(x) = Kx−(α+1). For α ≤ 0,

∫∞
0 p(x)dx = ∞

due to the upper limit, and similarly, for α ≥ 0,
∫∞
0 p(x)dx =∞ due to the

lower limit. A pure power law distribution on [0,∞] cannot be normalized
for any α. This is of course possible on any restricted domain [a,∞], where
a > 0. But more typically one finds distributions such as the Lorentzian
distribution P (X > x) = A/(1 + x)α, which can be defined on the whole
interval, but which differs throughout from a pure power law by a slowly
varying function L(x) 6= 1

Distributions of discrete variables, in contrast, do not suffer from the
problem of unbounded normalization. This is for the obvious reason that
discreteness provides a built in lower bound, so the distribution is always
normalizable as long as α > 0. This is in a certain sense just a technical
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distinction; for example, one might argue that since there is a minimum
denomination of currency, wealth is a discrete variable, providing a lower
cutoff. Clearly some common sense is needed, and in most cases the central
point that a power law is an asymptotic notion still applies.

That said, it is also important to note that some power law distributions
converge to their asymptotic behavior much faster than others. There are
instances where power law scaling is an excellent approximation across a
broad range of values. A good example is the distribution of firm sizes
which fits a power law with α ≈ 1 very well, from the smallest firms with
only one employee to the largest firms with 106 employees [4]. In biology,
the power law scaling of metabolic rate against animal size applies across
24 orders of magnitude [83, 84]. Empirically, rapid convergence makes the
power law hypothesis much easier to test with a given amount of data.
Theoretically, rapid convergence is important because it implies that scale
free behavior applies across a broader range, and gives an important clue
about mechanism – some mechanisms tend to yield faster convergence than
others.

2.1 Invariance under aggregation

One of the reasons that power laws are ubiquitious is because of their strong
invariance under aggregation. The property of being a power law is preserved
under addition, multiplication, and polynomial transformation. When two
independent power law distributed variables are combined, either additively
or multiplicatively, the one with the fattest tail dominates; the tail exponent
of the combined distribution is the minimum of the tail exponents of the
two distributions being combined. When a power law distributed variable
is raised to a (nonzero) power, it remains a power law but with an altered
exponent5 Letting α(x) be the tail exponent of the random variable x, we
can write these three transformation rules in the following form:

α(x+ y) = min(α(x), α(y))
α(xy) = min(α(x), α(y)) (5)
α((xk) = α(x)/k (6)

5These aggregation rules are intuitively easy to understand. Let z = x + y, where x
and y are both power law distributed. If α(x) < α(y), then in the tails P (y) � P (x),
and P (z) ≈ P (x). Similarly, suppose z = xy; after taking logarithms this becomes
log z = log x+ log y. As shown in Section 6.1, the logarithm of a power law variable is an
exponential. By the same argument above, the one with slowest decay dominates. The
rule for polynomials is obvious from taking logarithms.
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The first two rules state that under addition or multiplication the fattest
tailed distribution dominates. Under a polynomial transformation, the low-
est order term of the polynomial will dominate.

In thinking about how a power law affects different time scales it is
useful to understand how the whole distribution evolves under aggregation.
To take a concrete example, consider a highly idealized model for prices6.
Let πt be the price at time t, and ft > 0 be the multiplicative change in
price from the previous period, so that πt = ftπt−1. By taking logarithms
and summing this can be rewritten

rt(τ) = log πt+τ − log πt =
i=t+τ∑
i=t

log ft. (7)

rt(τ) is the logarithmic price return on timescale τ . Assume that log ft is a
random variable with a symmetric power law distribution with α > 2.

How does the distribution of returns, P (r(τ)), change with τ? As τ
increases, due to the central limit theorem, the center of the distribution
approaches a normal distribution7. However, due to the aggregation laws
given above, the tails remain power laws, and the tail exponent α is un-
changed. There is a competition between these two processes. In the limit
as τ → ∞, the normal distribution wins, but for finite τ the power law is
always there. As τ increases the fraction of the distribution that is approx-
imately normal grows, while the fraction with power law scaling shrinks.
However, the power law never goes away, even on long timescales; it just
describes rarer but more extreme events. It is worth keeping in mind that
as one aggregates, the most extreme events grow in size. Thus, though the
events in the power law tail may become rare, they may be very large when
they happen. See [17] for a more quantitative description.

2.2 Limiting distributions of extrema

One reason that power laws are ubiquitous is that they are one of three
possible limiting distributions for extreme values [27]. In a sense made more
precise here, any “well behaved” distribution with “sufficiently fat tails” is
a power law. Just as the normal distribution emerges as a limiting value of

6It may help to think about Student’s t distribution. The tail exponent α is just the
number of degrees of freedom.

7Note that when the log-return r(τ) is normally distributed, the actual return Rt(τ) =
(πt+τ − πt)/πt is log-normally distributed (see Section 6.4). While the log-normal distri-
bution is quite fat-tailed, all its moments exist, and its tails are not fat enough for it to
be a power law.
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sums of random variables, the power law emerges as one of three possible
limiting distributions for extrema, such as the maximum or minimum. These
limiting distributions come about because in the limit x → ∞, the typical
size of the maximum or the minimum in a large but finite sample effectively
determines the behavior of the tail of the distribution.

We will illustrate this for the maximum. For a given distribution P (x),
if a limiting extremal distribution for the maximum exists, it can be con-
structed according to the following procedure:

1. Make independent draws from P of k sequences (x1, . . . , xn), each of
length n.

2. Compute the maximum value Mk(n) for each sequence.

3. Compute a rescaled variable M ′k(n) = (Mk(n)− dn)/cn, where dn and
cn are centering and normalizing constants that depend on P (x) and
n.

4. Take the limit first as k →∞ and then as n→∞.

If it is possible to find cn and dn so that the distribution of M ′k(n)
converges to a limiting distribution, there are only three possibilities (listed
here as cumulative distributions, i.e. P (M ′ < x)):

Fréchet: Φα(x) =
{

0 , x ≤ 0
exp{−x−α} , x > 0

α > 0 .

Weibull: Φα(x) =
{

exp{−(−x)α} , x ≤ 0
1 , x > 0

α > 0 .

Gumbel: Λ(x) = exp{−e−x} , x ∈ R .

The limiting distribution that emerges depends on the fatness of the
tails of P (x). If P (x) has finite support8, then the limiting distribution
is Weibull. If it has infinite support but the tails decrease sufficiently fast
so that all the moments of P (x) exist, for example normal, exponential,
and log-normal distributions, then the limiting distribution is Gumbel. But
if the tails die off sufficiently slowly that some higher order moments do
not exist, then the limit is a Frechet distribution, which is a power law.
This can be seen by expanding the exponential function in a Taylor series.
P (X > x) = 1 − Φα(x) = 1 − exp{−x−α} ≈ x−α. (We have subtracted

8Finite support means that there exists xmin and xmax such that P (x) = 0 for x < xmin
and x > xmax.
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this from one to convert to a tail probability). Examples of power law
distributions are the Pareto, Cauchy, Student’s t, Levy stable, Lorentzian,
log gamma, and double Pareto. The three possible limiting distributions are
closely related, in the following sense: If a random variable x has a Frechet
distribution, then log x has a

A few caveats: The resulting limiting distributions are only unique up
to affine transformations9. The criteria for whether or not a limit exists
is essentially a continuity condition, but not all distributions have well-
defined limits. The Poisson distribution is the most famous counterexample.
However, most common distribution functions are sufficiently continuous in
their tails that they have well defined limits. It turns out that if it is possible
to find a sequence of normalizing and centering constants cn and dn that
gives a limiting distribution, that sequence is unique. For example, if P (x)
is the uniform distribution defined on (0, 1), dn = 1 and cn = n−1. For a
Pareto distribution the norming constant is cn = (Kn)1/α

The key point here is that (when it exists), the limiting distribution
describes not just the behavior of the maximum, but also the second max-
imum, third maximum, etc., and in fact the entire order statistics of P for
extreme values. In the large n limit it tells us the probability of drawing a
value of a given size. It thus fully characterizes the tail of the distribution
function.

It can be shown that a distribution P (x) converges to the Frechet dis-
tribution if and only if P is a power law. Thus any distribution which
is sufficiently continuous to have a limiting distribution for its extremum,
and that has a cutoff above which moments do not exist, is a power law.
This makes precise our statement above that a power law describes the tail
behavior of any “well-behaved” distribution with “sufficiently fat tails”.

3 Long-memory processes

The relevance of power laws is not limited to marginal distributions of a
single variable. Joint distributions can asymptotically follow power laws,
reflected in the scaling properties of moments such as correlation functions.
A particularly relevant example for economic time series is the long-memory
random process, defined as a random process with a positive autocorrelation
function C(τ) ∼ τ−β, with 0 < β < 1. Such a strong autocorrelation implies
a high degree of long-term predictability, particularly when β is small. Long-

9The limiting distribution H(x) is equivalent under an affine transformation to aH(x)+
b, where a and b are constants.
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memory also has important consequences for diffusion processes and for the
rate of convergence of statistical estimates.

Long-memory processes have been observed in natural and human phe-
nomena ranging from the level of rivers to the temperature of the Earth [12].
Reports of long-memory in economic data span the gamut from macroeco-
nomics to finance [7]. In macroeconomics this includes GNP data [24], the
consumer price index and other measures of inflation[8, 38], and the term
structure of interest rates [6]. In finance long-memory in price volatility has
been observed both for stocks [25, ?] and exchange rates [37] and in trading
volume [49]. Recently long-memory has been observed for time series of
order signs (whether or not a new order is to buy or to sell); this is seen
in high-frequency data for both the Paris Stock Exchange and the London
Stock Exchange [15, 44]. The fact that this is really long-memory can be
verified at a very high level of statistical significance [44]. Surprisingly, the
autocorrelation function for the signs of individual buy and sell orders (in
markets with thousands of orders per day) is significantly positive over lags
as long as two weeks. Liquidity, as measured by the volume at the best bid
or ask, also shows long-memory [44].

In finance there have also been claims that stock returns display long-
memory [58, 36], but the evidence has been disputed [48]. Long-memory
in price returns would be remarkable because of its implications for market
efficiency, and in any case it is clear that if it exists at all, the long-memory
of price returns is very weak. More recent high-frequency studies do not
show long-memory in prices, but they do raise the interesting question of
how market efficiency coexists with the long-memory of order flow [15, 44].

Long-memory has several important consequences. An obvious one is
that it implies a high degree of predictability. This can be made explicit by
constructing, for example, an autoregressive model of the form x̂(t + τ) =∑N

i aix(t − i). The persistence in the autocorrelation function makes it
useful to use a high value of N , which dramatically improves forecasts over
longer time horizons τ . Whereas for a normal Markov process the accuracy
of forecasts decays exponentially, for a long-memory process it decays as a
power law.

Another consequence is that the variance of a long-memory diffusion
process grows faster than a normal diffusion process. Consider a discrete
diffusion process y built out of the sum of random variables xt, i.e. y(N) =∑N

t=1 xt. If xt does not have long-memory, then y behaves in the usual way,
and the variance of y(N) increases proportional to the number of steps N .
When xt has long-memory, however, the variance grows as N2H , where H is
called the Hurst exponent. For a long-memory process the Hurst exponent is
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in the range 1/2 < H < 1. It is related to the scaling of the autocorrelation
function by H = 1 − β/2. When β = 1, H = 1/2, and normal diffusion is
recovered. In physics, a random process with H 6= 1/2 is often referred to as
anomalous diffusion10. The reason that β = 1 is the cutoff for long-memory
behavior can be seen from the derivation of this result; the rate of diffusion
depends on the integral of the autocorrelation function, which when β < 1
becomes unbounded [?].

In statistical estimation long-memory has the important consequence
that it causes sample means to converge very slowly. The standard deviation
of the sample mean of a long-memory process converges as σ ∼ N−H+1,
where N is the number of data points. H = 1/2 gives standard square root
convergence of errors, but as H increases the convergence becomes slower,
until for H = 1 the process become nonstationary, and the mean fails to
converge at all. Thus in a certain sense an increase in long-memory can
be viewed as making a timeseries less stationary. For economic series with
long-memory, it takes a lot more data than one would normally expect to
get an answer at a given level of accuracy.

There are many problems in physics that exhibit long-memory, and the
question of what causes long-memory has received a great deal of attention
[?]. Reviewing this literature is beyond the scope of this paper.

4 Practical importance of power laws in financial
economics

Power laws have both practical importance and theoretical implications for
financial economics. In this section we begin by briefly reviewing the em-
pirical literature relating to power laws in financial economics. There are a
sufficient number of different examples that we can only list most of them.
We then discuss a few of them in more detail, in particular the problems of
clustered volatility, risk control, option pricing, statistical estimation, and
hyperbolic discounting. We should stress that some of claims made here are
controversial; in the next section we discuss this in the context of reviewing
empirical methods of testing for power laws.

10Unfortunately the term anomalous diffusion is used in two different senses. The loose
sense refers to any random process involving sums of uncorrelated random variables; the
strict sense refers to variables that are sufficiently correlated to alter the Hurst exponent.
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4.1 Summary of empirical evidence for power laws

Power laws have been reported for a wide variety of different phenomena in
financial markets. Some examples are:

• Clustered volatility. The autocorrelation of the absolute value of price
changes is a long-memory process whose autocorrelation function de-
cays as τ−β, where β is approximately in the range 0.2 < β < 0.5
[25, 77, 65].

• Large price changes on short time scales [57, 30, 74, ?, 42, 51, 64, 50,
52, 34, 69, 75, 65]. Price changes are measured in terms of log-returns
r(τ) = log p(t+ τ)− log p(t), where p can be either a transaction price
or the average of the best quoted buying and selling prices. Log returns
are generally observed to be a power law, with a tail exponent in the
range 1.5 < α < 6.

• Hyperbolic discounting. Psychological evidence [?] suggests that people
do not discount future utility decays according to an exponential, and
that a power law may be a better approximation. This may emerge
for good theoretical reasons in circumstances where interest rate vari-
ations are not taken into account [5]

• Distribution of income or wealth. The distribution of income or wealth
has a power law tail. The exponent varies from country to country
and epoch to epoch, with the tail exponent in the range 1 < α < 3
[21, 80, 39, 73].

• Firm size. The size s of large firms measured by a variety of different
methods, e.g. market capitalization or number of employees, has a tail
exponent α ≈ 1 [87, 39, 4].

• Fluctuations in the width of the distribution of growth rates of compa-
nies [1]. Letting s be the standard deviation in the logarithmic growth
rate, P (s > S) ∼ S−α, with α ≈ 0.2.

• The volume of individual transactions for NYSE stocks [35] has a power
law distribution with tail exponent α ≈ 1.7.

• The prices for limit order placement measured relative to the best
price. Let the relative limit price be ∆ = |π − πbest|, where π is the
price where a new limit order is placed, and πbest is the best quoted
price for orders of the same type, e.g. if the limit order is a buy order,
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πbest is the best quoted price for buy orders. α ≈ 0.8 for the Paris
Stock Exchange [16], and α ≈ 1.5 for the London Stock Exchange
[88].

• The price impact as a function of market capitalization. Price impact is
defined as the difference between the average of the bid and ask quotes
immediately before and after a transaction. Even after a normalization
dividing the trading volume by the average trading volume for the
given stock, the price impact scales as Cγ , where C is the market
capitalization and γ ≈ 0.4 [47].

• The cumulative sum of negative returns following a crash. Following a
large downward move in prices, all subsequent downward price move-
ments that exceed a given threshold are accumulated. The cumulative
sum increases as tγ , where t is the time since the crash, and γ ≈ 1 [46].
A similar relationship for seismometer readings after large earthquakes
was observed by Ohmori in the nineteenth century [63].

• The autocorrelation of signs of trading orders. Let the sign of a buy
order be +1, and the sign of a sell order be −1. This is a long-memory
process that decays as τ−β, where τ can be either the time or the
number of events separating the orders. β ≈ 0.2 for the Paris and
β ≈ 0.6 for the London Stock Exchange [78, 45].

• Autocorrelation of order volume. For the London Stock Exchange the
order volume measured in either shares or pounds is a long-memory
process whose autocorrelation function decays as roughly τ−β, with
β ≈ 0.6 [45].

• Autocorrelation of liquidity at the best bid and ask. For the London
Stock Exchange the volume at either the best bid or the best ask is a
long-memory process whose autocorrelation decays roughly τ−β, with
β ≈ 0.6 [45].

For a more in-depth discussion of some of these, see Cont [?].

4.2 Clustered volatility

Rational expectations equilibrium predicts that prices should be uncorre-
lated in time. This is observed to good approximation in real prices. How-
ever, even though signed price changes are uncorrelated, their amplitude
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(volatility) is strongly positively correlated. This is called clustered volatil-
ity. That is, if the market makes a big move on a given day, it is likely
to make a big move on the next day, even though the sign remains unpre-
dictable (at least from the point of view of a linear model). Studies of price
time series show that the autocorrelation of absolute price returns asymptot-
ically decays as a power law of the form τ−α, where 0.2 < α < 0.5, indicating
that volatility is a long-memory process [25, 77, 65, 12]. This gives rise to
bursts of volatility on timescales ranging from minutes to decades.

Standard equilibrium models predict that the amplitude of price changes
is driven solely by the information arrival rate. If the states of nature become
more uncertain, then prices respond by fluctuating more rapidly. Indeed,
it is well-established that most natural disasters, such as flood, hurricanes,
and droughts, are long-memory processes, so this explanation is plausible
[12]. Another plausible explanation which is also compatible with standard
equilibrium models is that this is due to an innate non-economic property
of human interactions that causes people to generate news in a highly cor-
related way. Under either of these hypotheses, clustered volatility is just a
reflection of an exogenous property, which is then passively echoed in the
resulting equilibrium.

However, as we have already discussed in Section ??, this does not ap-
pear to be compatible with studies that show a low correlation between news
arrival and price movements [22, ?]. While there are several reasons to be-
lieve that exogenous factors influencing news may be long-memory processes,
these do not appear to be the principal inputs the market is responding to.

In contrast, clustered volatility emerges endogenously in many agent-
based models with bounded rationality, which allow deviations from rational
expectations equilibrium [2, 18, 54]. Many of these models also simultane-
ously capture the property that signed price series are uncorrelated. Thus,
while the lack of correlation in prices is often cited as a validation of equi-
librium theory, the same prediction is also made by models with weaker
assumptions, which also explain clustered volatility.

While standard equilibrium models do not seem to be compatible with
clustered volatility, it is possible that they can be extended in some way to
include it. This might come about naturally, for example, in a temporary
equilibrium setting. More work is needed to determine whether equilibrium
is compatible with clustered volatility, and if so, the necessary and sufficient
conditions for it to occur. There are also practical reasons to understand the
power law nature of clustered volatility, in particular its role in risk control
and option pricing, as discussed in the next section.
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4.3 Option pricing and risk control

Power laws have important practical implications for both option pricing
and risk control. This is both because of the fat tails of the marginal distri-
bution of price changes and because of clustered volatility. Power laws are
important for risk control because extreme price movements are larger than
one might expect, and the power law hypothesis provides a parsimonious
method of characterizing them.

The fat tails in prices returns have received a great deal of study [57, 30,
74, ?, 42, 51, 64, 50, 52, 34, 69, 75, 65]. Power law behavior is much more
evident at short time scales and for large data sets. For returns of individual
American stocks on timescales of the order of 15 minutes, for example, power
law scaling is a good approximation for about 50 standard deviations (a
range of variation of about two orders of magnitude) [75]. Although the
first papers by Mandelbrot [57] and Fama [30] gave α < 2, suggesting that
the second moment did not exist, most later work reports α > 2. There are
probably real variations in the tail exponent across different assets, though
because of the difficulty of producing reliable error bars, this remains a
debated point [31]. Power laws have been claimed for returns on timescales
as long as a month; insofar as the model for price aggregation given in
Section 2.1 is valid, one one would expect this to be relevant on longer
times scales as well (though it is harder to measure empirically due to data
limitations).

The practical value of the power law hypothesis for risk control is that it
results in more efficient extreme risk estimates than standard non-parametric
methods. Suppose one wishes to estimate the future risk of extreme events
from an historical sample of past returns. Commonly used nonparametric
methods, such as the empirical bootstrap, work well for interpolating risk
levels that have already been experienced in the sample. However, when
used to extrapolate risk levels that are not contained in the sample, they
will consistently underestimate risk. The power law hypothesis, in contrast,
is more parsimonious, and so is more efficient with limited data. This can
result in less biased estimates.

Risk control estimates are also affected by the long-memory nature of
clustered volatility. As we have discussed in Section 3, when the amplitudes
of the increments of a random walk have long-memory, the variance of the
process grows faster than it does under a standard random process. This
implies greater risk. Understanding the properties of the long-memory (e.g.
having a good estimate of the Hurst exponent) makes it possible to estimate
risks more accurately.
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This is closely connected to the problem of forecasting volatility. The
mainstream approach for doing this is with ARCH models and their general-
izations [28, 27], which fail to properly capture either long-memory or power
law tails. When an ARCH model is used to generate a stochastic volatil-
ity random process, the resulting variables have a power law tail. However,
when the model is fit to real data, the tail exponent is much too large, i.e. the
tails of an ARCH process are too thin to explain the fat tails of prices. More
importantly, the ARCH random process is not a long-memory process. One
of the main symptoms that result from this is that an ARCH model fit on
one timescale does not work well on a different timescale [?]. This is in con-
trast to models that explicitly take long-memory into account [7, 13, 70, ?].
It appears that long-memory volatility models have substantially more pre-
dictive power than standard ARCH models [53], and furthermore that they
are more parsimonious in that a single model can be used to successfully
forecast volatility on a variety of different timescales.

This has practical implications for derivative pricing. Both the fat tails
in price movements and the long-memory of volatility affect option prices.
Models that explicitly take this into account are more accurate than the
standard Black-Scholes model, and a provide a more parsimonious fit to the
data than non-parametric alternatives [17, 14]. The long-memory property
of clustered volatility is also important for theoretical reasons, as the scale
invariance associated with power law scaling suggests that a similar mecha-
nism may drive fluctuations in the amplitude of price movements, across a
spectrum of different timescales ranging from minutes to years.

4.4 Statistical estimation in economics

As listed in Section 4.1, volatility is only one of many economic time series
that are long-memory processes with power law tails. This has important
consequences for statistical estimation. Power tails and long-memory can
substantially increase the error bars associated with statistical estimation.
While robust and nonparametric statistical estimation methods attempt to
take this into account, they typically lack efficiency. The moving block
bootstrap, for example, is a standard method that attempts to cope with
clustered volatility. However, the time interval chosen for the bootstrap
forces the choice of a specific timescale, a procedure that is inherently un-
suited for a scale free long-memory process. Techniques that are specifically
designed for long-memory process, such as the variance plot method [12],
produce better results. Given the prevalence of long-memory processes in
economics, it is surprising that this problem has not received more atten-
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tion, and that methods specifically tailored to long-memory and power law
tails are not better developed and more widely used.

4.5 Utility discounting

The assumption that future utility is less valuable than present utility is
pervasive in economics. It is almost universally assumed that the proper
function for weighting utility as a function of time is an exponential, e−rt.
The standard argument is that this depends on interest rates. If a dollar
today can yield two dollars ten years from now, then a dollar ten years from
now is only half as valuable as a dollar today.

Psychological experiments suggest, however, that most people do not
use exponential weights in considering future utility. Instead, they place
stronger weights on utility in the far future than would be expected by an
exponential. It has been suggested that a power law provides a better fit to
the empirical data [?].

This can be supported by theoretical arguments [5]. In the real world,
interests rates are not constant, but rather vary in an essentially random
way. In world of uncertain interest rates, the loss of utility with time must
be weighted by the distribution of interest rates, and so is of the form

u(t) =
∫
P (r)e−rtdr.

Under the standard assumption that P (r) is a log-normal distribution, u(t)
is a power law11 (see Section 6.5).

The consequences of this have not been carefully studied, and its impli-
cations for equilibrium models are not clear. It is possible that this might
explain some of the power laws observed empirically. Given the practical
importance of utility discounting, and its centrality in economic theory, it
seems surprising that this has not received more attention. Perhaps the most
surprising thing is that ordinary people apparently intuitively understand
this, while mathematical economists do not.

11Ayres and Axtell originally made this argument assuming P (r) is an exponential
function. The log-normal is a better approximation to real interest rates. An even better
approximation is that real interest rates have power law tails. All three of these assump-
tions yield power law utility functions.
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5 The empirical debate

Many economists have been quite sceptical about power laws, and whether
power laws exist at all in economics has been a subject of debate. In this
section we briefly review methods of data analysis for determining whether
power laws exist, and discuss some of the criticisms that have been raised.

5.1 Testing the power law hypothesis

The most common procedure used to test for the existence of a power law
is visual inspection. In a typical paper, the authors simply plot the data
in double logarithmic scale and attempt to fit a line to part of it. If the
line provides a good fit over a sufficiently wide range, hopefully at least
two orders of magnitude, then the authors suggest that the data obey a
power law with an exponent equal to the slope of the line. This has many
obvious problems: First, there is no objective criterion for what it means
to be a “good fit”, and second, the choice of a scaling range creates worries
about overfitting. Not surprisingly, the subjectivity of this procedure has
engendered criticism in economics and elsewhere [55, 3].

A quantitative approach to hypothesis testing makes use of extreme value
theory to reduce this to a statistical inference problem. This takes advantage
of the fact that there are only three possible extremal limiting distributions,
as described in Section 2.2. The testing procedure uses each of the three
limiting distributions as a null hypothesis. If the Weibull and Gumbel hy-
potheses are strongly rejected, but the Frechet hypothesis is not, then there
is good evidence for a power law distribution12. There are several examples
where these methods have been applied and give highly statistically signif-
icant results supporting power laws [?, 42, 51, 50, 52, 69]. These methods,
however, are not fully satisfying. There are several problems. One is that
these tests assume the data are IID, whereas price returns have clustered
volatility and are so are not IID. It is an open problem to develop a test
that properly takes this into account13.

Testing for power laws is inherently difficult due to the fact that a power
law is an asymptotic property, and in a real data set one can’t be sure there

12Alternatively, one can show that the posterior odds of the Frechet hypothesis are much
higher than either of the alternatives.

13A related problem is that of testing for long-memory. The test originally proposed by
Mandelbrot [59, 60] is too weak (in that it often fails to reject long-memory even when
it is not present), while a revised test proposed by Lo [48] is too strong (it often rejects
long-memory even when it is known to be present). This is another area where improved
hypothesis testing would be very useful.
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is enough data to be inside the asymptotic regime. As we have already said,
some power law converge very quickly, so that for most of the regime the
power law is a good approximation, while others converge very slowly. It is
quite easy to construct distributions that will fool any test unless there is
a very large sample of data. This is a reflection of a broader problem: A
power law is a family of distrubutions, the properties of whose members are
not well specified in advance. Testing for membership is more difficult than
testing for conformity to a specific distribution. This is further complicated
by the fact that in many cases boundary constraints dictate inherent cutoffs
to power law scaling. The magnitude of earthquakes, for example, displays
clear power law scaling across many orders of magnitude, but there is an
obvious cutoff due to the physical constraint that there is an upper bound
on the amount of energy that can be stored in the earth’s crust. Thus, while
a power law is an asymptotic behavior, for real applications there are always
limits imposed by finite size. Sensible interpretation of results depends on
good judgement. The crude visual inspection method has merit in forcing
the reader to use judgement and common sense in interpreting the results
[85], and should always be used in tandem with more formal methods.

The simplest method for improving the fidelity of tests for power laws
is to use more data. Recent studies have achieved this by studying high
frequency data, often involving millions of observations [69, 75, 16, 45]. Un-
derstanding at longer frequencies can be achieved by studying the time ag-
gregation properties of the time series (e.g to make sure that large events
are not strongly reverting), and making use of the fact that the power law
tails of a distribution are preserved under most aggregation mechanisms
[17, 70]. Thus, if one finds a power law in high frequency data, barring a
rather unusual time aggregation mechanism, it will still be present at lower
frequencies, even if it describes rarer events.

Data analysis should always be viewed as a first step whose primary
importance is in guiding subsequent modeling. The real test is whether
power laws can improve our predictive or explanatory power by leading to
better models. Self-similarity is such a strong constraint that, even if only an
approximation over a finite range, it is an important clue about mechanism.
Ultimately, the best method to demonstrate that power laws are applicable
is to construct theories that also have more detailed testable predictions.
See the discussion in Section 6.
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5.2 The critical view

Because of the problems with hypothesis testing discussed above there has
been considerable debate about whether power laws exist at all in economics.
One of the often-cited studies is by LeBaron [43], who showed that he could
mimic the power law behavior of a real price series using a model that
can be proven to not have power law scaling. He fitted the parameters
of a standard volatility model14 to match the price statistics of a Dow-
Jones index proxy. The data set contains daily prices averaged over the 30
largest U.S. companies for a period of about a century, with roughly 30, 000
observations. This price series was studied by several authors [64, 50] who
claimed that the evidence supported power law scaling in prices. LeBaron
demonstrated that he could produce price series with scaling properties very
similar to those of the real data using a stochastic volatility model with three
time timescales. This is significant since it can be shown that the model he
used does not have true asymptotic power law scaling. Thus, he suggests,
the power law found in the data may only be an illusion. This study has
been cited as raising grave doubts about the whole question of power laws
in finance and economics [26].

The physicist responds by noting that in order to fit this model, LeBaron
had to choose very special parameters. In his model the volatility level
is driven by a combination of three AR(1) models, one of which is yt =
0.999yt−1 + nt, where nt is an IID noise process. The parameter 0.999 is
very close to one; when it is one, the model does have asymptotic power law
behavior. The reason the model has an approximate power law is because
it is extremely close to a model with a true power law.

This is a reflection of a broader issue: For the family of volatility models
LeBaron uses, under random variations of parameters, those that mimic
power laws are very rare. In Section 4.1 we listed twelve different aspects of
markets where the evidence suggests power laws. While it might be possible
that a few of these are better described in other terms, it seems unlikely
that this could be true of all of them.

Furthermore, there is the important issue of parsimony: Why use a
model with three parameters when one can describe the phenomena as well
or better using a model with one or two? To fit the series LeBaron has to
choose three timescales which have no natural a priori interpretation. The
scale free assumption is both more parsimonious and more elegant.

A common statement by economists is that power law scaling is easily
14The stochastic volatility model he used was not an ARCH model, and does have power

law behavior except for certain special parameter values.

23



explained in terms of mixture distributions. This statement derives from
the fact that mixtures of distributions, for example a linear combination
of normal distributions with different standard deviations, have fatter tails
than any of the individual distributions by themselves. However, the key
point that often seems to go unrecognized is that this is not sufficient to
get asympototic power law behavior – while all mixture distributions have
fatter tails, they do not all exhibit power laws.

The critiques certainly make the valid point that better and more careful
testing is needed, and that too much of data analysis in this area relies on
visual inspection alone. Nonetheless, there is a substantial body of evidence
suggesting that power law behaviors exist in economics, at least as a good
approximation. Either we need to do more work to reconcile this with equi-
librium models, or we need to find entirely new approaches, which capture
the mechanism underlying this behavior.

6 Mechanisms for generating power laws

Physicists view the existence of power laws as an important modeling clue.
It seems this clue has so far been largely ignored by financial economists. In
physics, once it became clear that power laws cannot be explained by linear
or (physical) equilibrium models, a great deal of research was undertaken
to develop nonlinear and nonequilibrium models. Such a burst of research
in this direction has not occurred in economics. Economic equilibrium is
very different from physical equilibrium, and there is at least one example
illustrating that economic equlibrium can be consistent with power laws [72].
Nonetheless, the existence of power laws suggests a change in the focus of
attention in model building.

In this section, with the goal of stimulating future research in economics
along these lines, we give a review of mechanisms for generating power laws.
This is not a well-developed subject – there are no theorems stating the
necessary and sufficient conditions for power laws to occur. Furthermore,
there are many levels of description on which models can be constructed,
and these levels are not necessarily mutually exclusive. Thus, the same phe-
nomenon might be explained in terms of a maximization argument, a non-
linear random process, and a more detailed deterministic dynamics. These
may all be consistent with each other, but at operating at different levels of
explanation, and revealing different aspects of the underlying phenomenon.
There is a large body of modeling lore concerning the types of mechanisms
that can generate power laws, which we have collected together here. Cer-
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tain themes emerge, such as self-similarity, hierarchy, competition between
exponentials, growth, amplification, and long-range interaction. The knowl-
edge that these themes are present may suggest new modeling directions
in economics, which may have implications beyond the existence of power
laws.

From our discussion of how power laws emerge from extreme value the-
ory, it seems that the generation of power laws should not be a difficult task.
Any process with sufficiently fat tails will generate a power law, so all we
have to do is create large extremal values. However, it should be born in
mind that some power laws are “purer” than others, i.e. some processes con-
verge to a power law quickly, while others do so slowly. Furthermore, some
processes, such as pure multiplicative processes (which have a log-normal as
their solution) can mimic power laws for a range of values, and then fail to
be power laws asymptotically. While this may be confusing, an examination
of the underlying mechanisms for generating power laws makes it clear how
this similarity comes about.

The self-similarity associated with power laws is an important and poten-
tially simplifying clue about model construction. For example, the apparent
fact that price volatility scales as a power law on scales ranging from min-
utes to years suggests that the mechanism generating this scaling is the same
across these scales. The alternative is that it is just a coincidence: there
are different processes on different scales, that just happen to have the same
scaling exponent. While possible, this seems unlikely, although of course
how unlikely depends on the degree of accuracy to which the dynamics are
self-similar.

The discussion presented here draws on the review by Mitzenmacher
[68], as well as the books by Sornette [82], and Mandelbrot [63], though
these sources do not span all the topic discussed here.

6.1 Hierarchies and exponentials

We will begin by constructing a few trivial examples of power laws “by
hand”, with the goal of illustrating some of the recurring themes of mech-
anisms for power laws. Imagine a company whose organizational chart is a
tree with k branches at each node of the tree. Furthermore, suppose that the
salaries of the employees increase by a constant multiplicative factor γ > 1
at each node as we move up the tree. Thus, if employees at the bottom of the
tree have salary s0, moving up the tree the salaries are γs0, γ2s0, . . . , γ

ns0,
where n is the depth of the tree. If we label the management levels in the
company from the bottom as i = 0, 1, . . . , n, at the ith level of the tree there
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are N(i) = kn−i employees with salary s(i) = γis0. Eliminating i shows
that the number of employees with salary s is N(s) = kn(s/s0)−(α+1), where
α + 1 = log k/ log γ. The cumulative distribution N(s > S) is a power law
in S with tail exponent α. Note that if log k < log γ then the manager at
each level makes more than all the employees immediately below her, and
in the limit N →∞ almost all the income is paid to the CEO.

Another trivial example is a Cantor set, which is a simple geometric
illustration of the connection between power laws and fractals. A Cantor
set can be constructed by removing the middle third of the unit interval and
then removing the middle third of each remaining interval ad infinitum. It
has the property that, in a certain sense made precise below, the size of a
Cantor set is a power law function of the scale of resolution with which it
is measured. This is true of any fractal (and indeed can be used to define a
fractal).

For the simple example above, we can measure the size of the Cantor set
by partitioning the interval into equal subintervals of size ε. We can define
the coarse grained size of the Cantor set at resolution ε as S(ε) = Nε, where
N is the number of subintervals that contain any part of the Cantor set. If
ε = 3−i, where i is an integer, then the coarse grained size of the Cantor
set scales as as power law S(ε) = ε−D, where D = log 2/ log 3 is the fractal
dimension. The scale invariance is obvious from the fact that the Cantor set
contains an infinite number of self-similar subsets.

We can construct a more general example of a Cantor set by instead
successively dividing each interval into k equal subintervals, each 1/γ smaller
than the previous subinterval. Defining the coarse-grained resolution in this
case requires some more care, but with an appropriate generalization it scales
as N(ε) = ε− log k/ log γ . We have chosen the notation intentially to make the
analogy to the previous example of a firm clear: The construction of the
Cantor set can be pictured as a tree, and the width of each subinterval
is analogous to the salaries of the employees. These examples illustrate
how power laws are typically associated with hierarchies, even though the
underlying hierarchy is not always obvious.

These two examples also illustrate how power laws involve competition
between exponentials. For a power law y = xα the logarithm of y is a
linear function of the logarithm of x. If log x grows linearly, then x grows
exponentially, and y also grows exponentially, albeit at a different rate. The
exponent alpha gives the relative rate of growth of the two logarithms. A
closely related fact is that an exponential transformation of an exponentially
distributed variable yields a power law distribution. To show this formally,
suppose X and Y are random variables, and X is exponentially distributed

26



with P (X > x) ∼ e−ax, if Y = ebX then

P (Y > y) = P (ebX > y) = P (X > log y/b) = y−a/b (8)

This states the obvious fact that for a power law distributed function we can
always make a logarithmic transformation to coordinates where the power
law becomes an exponential function. This is a very useful fact, since there
are many mechanisms that generate exponential probability distributions,
and there are many situations where exponential transformations are nat-
ural. In the example of the hierarchical firm, for instance, the power law
comes from the competition between the exponential growth in the number
of employees moving down the tree and the exponential growth in salary
moving up the tree. In the Cantor set example it comes from the competition
between the exponential proliferation of intervals and their corresponding
exponential decrease in size.

One of the great early discoveries in economics nicely illustrates the
emergence of a power law through the competition between exponentials.
This discovery is the St. Petersburg paradox, which Daniel Bernoulli origi-
nally published in the Commentary of the St. Petersburg Academy in 1730
[66]. Consider a fair game in which the original stake is one dollar. Your
opponent tosses the coin. If it is heads, she pays you the stake; otherwise
the stake doubles. How much would you pay in order to play this game?

Of course the first question you should ask is, “How much can I expect
to win?”. This is easy to calculate: The probability of getting tails n times
in a row is p(n) = 1/2n, while the payoff is 2n−1. Thus the average payoff
is
∑∞

i=1 p(n)2n−1 =
∑∞

i=1 1/2 = ∞. The average payoff couldn’t be better.
Nonetheless, the most likely outcome is that you make only a dollar. The
distribution is heavily skewed – even though good outcomes are extremely
favorable, such outcomes are rare. Bernoulli argued that the infinite payoff is
misleading, and that what one should do instead is add the expected utility.
If the marginal utility of wealth is decreasing, the bet is not so attractive.
He suggested that a more realistic measure of utility might be the logarithm
of wealth, in which case the expected utility is only about four dollars15.

In fact, the St. Petersburg experiment can never be performed, because
no one would ever offer to take the other side of a bet whose expected payoff
is infinite. This is made worse by the fact that the distribution of outcomes

15In fact, this cannot fully explain the paradox. People are not consistently risk averse,
as illustrated by the fact that some people purchase lottery tickets, even when the expec-
tation is unfavorable. Utility depends on many other factors, such as the size of the bet
relative to one’s current wealth, or whether one is allowed to play the game repeatedly
[66].
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is extremely fat tailed. In fact it is a power law. To see this, note that
because the sum

∑∞
i=n 1/2i = 2n+1, the probability of winning 2n or more

is 1/2n. This means that the probability of gaining g or more is 1/g, i.e.
the distribution of outcomes is a power law with tail exponent one.

A real casino will never offer the St. Petersburg bet, but they will let
you double your bets. Despite the fact that this strategy no longer has an
infinite payoff, it does have the same power law tail of outcomes. Thus, the
probability of the casino going broke is unacceptably high. By limiting the
bets they guarantee that no one can play such a strategy very far into the
tail of large outcomes. With repeated non-doubling bets the law of large
numbers guarantees a thin-tailed distribution, and the casino can be quite
confident that they will not go out of business due to a large fluctuation.

As in the previous examples, the power law tail of the St. Petersburg
gamble (or the related doubling strategy) is due to the competition between
the exponentially decreasing probability of being eliminated and the expo-
nentially increasing payoff if not eliminated. In this case the exponential
rate of increase is equal to the rate of decrease, and so the exponent of the
power law is one.

6.2 Maximization principles

One way to derive power laws is by maximizing an appropriate function,
possibly under constraints. Examples of possible functions that can be
maximized include objective functions, such as expected utility, or entropy
functions. Constraints can play a critical role in determining the form of
the solution. Of course, one must have a good argument for why it is rea-
sonable to maximize a particular function, or impose a particular set of
constraints. Because they provide little detailed information about mech-
anism, maximization arguments are not always fully convincing, and may
not be strongly testable. They are often compatible with more detailed
explanations. We begin our accounting of mechanisms with maximization
arguments because they operate at a high level and are relatively simple.

6.3 Maximum entropy

Maximizing entropy amounts to assuming that something is as random as
it can be subject to constraints. The exponential or Gibbs distribution,
for example, is the solution that emerges from maximizing entropy subject
to the constraint that the mean takes on a fixed value. This assumption,
which is the underpinning of classical statistical mechanics, is very natural in
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a physical system where energy is conserved, and the behavior is otherwise
random. Similarly, if one imposes a constraint on the variance as well as the
mean, the solution is a normal distribution.

A power law, in contrast, emerges from maximizing the entropy under a
constraint on mean value of the logarithm. This can be demonstrated via the
method of Lagrange multipliers. We are seeking the probability distribution
p(x) with x > 0 that maximizes the entropy

∫
p(x) log p(x)dx, subject to

the constraints that
∫

(log x)p(x)dx = C and
∫
p(x)dx = 1, where C is a

positive constant. Constructing the Lagrangian and setting the functional
derivative with respect to the probability distribution to zero gives

∂

∂p(x)
[
∫
p(x) log p(x)dx+ λ(

∫
log xp(x)dx− C)− κ(

∫
p(x)dx− 1)] = 0,

where λ and κ are Lagrange multipliers. This has the solution p(x) = Kx−λ.
Assuming the power law is defined on the domain [a,∞], the constant K =
(λ − 1)aλ−1 is determined by the normalization condition, and the scaling
exponent λ = 1 + 1/(C− log a) is determined by the constraint on the mean
of log x.

Perhaps the earliest use of this explanation for a power law is due to
Mandelbrot, who offered it as an explanation of Zipf’s law for word frequen-
cies [56]. Zipf’s law states that the probability of occurence of a given word
is a power law function of its rank, pj = Kj1/(α−1) [29, 86]. The rank j of the
most common word is one, the second most common two, etc. Mandelbrot’s
hypothesis is that languages roughly maximize the information communi-
cated for a given cost of transmission. The key point in his argument is
that the cost of transmission of a given word is roughly proportional to the
logarithm of its rank. Suppose, for example, that we simply encode words
by their rank. This code has the advantage that the most common word,
encoded by “1”, has the shortest sequence, and less common words have
longer sequences. In base M , the number of digits required to send a word
of rank j is roughly log j. Sending the maximum information is equivalent
to maximizing the entropy. Thus, substituting j for x, and replacing the in-
tegrals by sums, the argument above implies that pj should be a power law.
Mandelbrot discusses several different efficient codes for encoding words and
shows that they all have this basic property.

Non-extensive entropy As mentioned in the introduction to this chap-
ter, in physics power laws are often associated with nonequilibrium behavior.
In contrast, when a system is in physical equilibrium its entropy is at a max-
imum, and under normal constraints on its energy or variance, the relevant
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distributions are exponentials are normals. Non-extensive entropy is a gen-
eralization that attempts to characterize systems that are out of physical
equilibrium. It naturally results in power laws.

For standard problems in statistical mechanics the entropy is an exten-
sive quantity. This means that the entropy of a system is proportional to its
volume – a system of twice the size will have twice the entropy. For this to
be true it is necessary that different regions of the system be independent, so
that the probability of a state in one region is independent of the probability
of a state in another region. This is true for any system in equilibrium (in
the physics sense). Physical systems with short range interactions come to
equilibrium quickly, and there are many circumstances where extensivity is
a good assumption. A good example is a hard sphere gas, where particles
interact only when they collide. Such a system comes to physical equilibrium
quickly, where the energies of the particles have an exponential distribution.

There are some systems, however, with very long-range interactions, that
are extremely slow to fully reach equilibrium. This is because distant parts
of the system interact with each other, so it is not possible to assume inde-
pendence. Such behavior is seen in simulations of particles, such as stars,
interacting under the influence of long-range forces, such as gravity. In such
cases the approach to equilibrium may be so slow that the assumption of
equilibrium fails for any practical purpose. In simulations of galaxy for-
mation, for example, starting from an arbitrary energy configuration, the
distribution of the kinetic energy of the stars will quickly approach a power
law distribution, and will settle into an exponential distribution only after
an extremely long time. The system has a very long-lived transient in which
its properties are described by power laws. In some cases the time needed to
reach equilibrium is so long that for all practical purposes it never happens.

In circumstances it can be shown that a good description of the statistical
properties of the system during its long-lived power law state can be obtained
through the use of a generalization of the entropy. This generalization is
called the Tsallis entropy,

Sq =
1−

∫
p(x)qdx

q − 1
. (9)

p(x) is the probability density associated with state x, and q is a positive
integer that depends on factors such as how long range the interactions are.
When q > 1, raising the probability density to the power q gives more weight
to high probability regions and less weight to improbable regions, and vice
versa when q < 1. In the limit q → 1 the Tsallis entropy reduces to the
standard entropy.
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To see why the Tsallis entropy is nonextensive, assume a system can be
described by a joint probability density p(x1, x2). If x1 and x2 are inde-
pendent, then p(x1, x2) = p(x1)p(x2), and the normal entropy is additive,
i.e. S1(p(x1, x2)) = S1(p(x1)) + S1(p(x2)), due to the additivity of the loga-
rithm of products. When q 6= 1, however, this is no longer true. The term
“non-extensive” harks back to problems in statistical mechanics where the
variables x1 and x2 represent the state of a system in two different physically
separated regions, but the point about non-additivity under independence
holds more generally.

By analogy with the maximum entropy principle, we can also maximize
the Tsallis entropy. If we constrain the mean (which is natural e.g. in the
case where x represents energy), then the Lagrangian is

∂

∂p(x)
[
∫

(p(x)− p(x)q)dx
q − 1

+ λ

∫
xp(x)dx− C] = 0.

This has the solution

p(x) = K(1− (1− q)λx)−
1

1−q , (10)

where K is a normalization constant. In the limit q → 1 this reduces to an
exponential distribution, but otherwise it is a power law distribution with
a tail exponent α = 1/(1 − q) − 1 = q/(1 − q). In a similar manner to the
above calculation, by constraining the variance as well as the mean it is also
possible to derive a generalized form of the normal distribution (which also
has power law tails). It can be shown that maximizing the Tsallis entropy
gives the correct solution for several problems, such as nonlinear diffusion
according to a multiplicative Langevin process ( Section 6.4), or the solution
of some nonlinear differential equations at bifurcation points (Section 6.8).
It also gives good empirical fits in many situations, such as the distribution
of the energies of stars in a simulation of galaxy formation or the number of
transactions in a given length of time in a financial market.

The Tsallis entropy has generated controversy because its underpinnings
in most circumstances remain unclear. While the functional forms of the
power law generalizations of the exponential and normal distributions seem
to empirically fit a broad range of different data sets, their superiority to
alternative power law distributions is not always clear.

Maximizing utility There has recently been a revival of maximization
principles to explain power laws by Carlsen and Doyle, via a mechanism
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they have dubbed Highly Optimized Tolerance (HOT) [19, 20]. Put in eco-
nomic terms, their assertion is that under some circumstances, maximizing
a risk-neutral utility function results in solutions with power law tails. For
example, using an argument that parallels Mandelbrot’s derivation of Zipf’s
law for word frequencies given above, they have proposed that the power
law distribution of file sizes observed on the internet maximizes storage ef-
ficiency.

Another example considers an idealized model of forest fires [20]. In this
model a forester is charged with maximizing the harvest of trees, in a highly
idealized setting where the only concern is forest fires. Trees are planted on a
grid. Fires are limited by constructing firebreaks, which are built by leaving
grid spaces blank. Once in every generation, just before the tree harvest,
there is a spark, which lands at a random grid site. It starts a fire that
burns all trees that are not protected by a fire break. To contain the fire,
the firebreaks must fully enclose a region around the original spark. I.e., the
fire will spread as much as it can – while it cannot cross empty sites, it can
burn around them unless the firebreak forms a “wall” that it cannot cross.
An optimal configuration of firebreaks separates the forest into contiguous
regions of trees, each enclosed by a firebreak. The distribution of the size of
the fires is precisely the distribution of the size of these regions. The tension
is that firebreaks consume space that could otherwise be used for trees. An
optimal solution maximizes the number of trees that are harvested, finding
the best compromise between the number of trees that are lost to fire and
the number of grid sites that are lost to firebreaks.

Carlson and Doyle showed that if the spatial distribution of sparks is
continuous but nonuniform, the distribution of fire sizes is a power law.
They argue that the characteristics of this solution are quite general: High-
performance engineering in complex environments often leads to systems
that are robust to common perturbations but fragile to unusual ones. For
the forest system, the optimal system of firebreaks achieves good yields on
average, but large fires are more frequent than one would expect, due to
the power law tails. Furthermore, the system is fragile in the sense that
perturbations to the firebreaks or changes in the spark distribution can lead
to disastrously sub-optimal performance.

This model has been criticized for several reasons. Although Carlson
and Doyle argue that their solution fits the distribution of forest fires very
well, it fits the distribution of naturally occuring forest fires, where there
is no good argument for the construction of an optimized system of fire-
breaks. The power law in the forest model derives from the two-dimensional
geometry of the problem, in particular the fact the area enclosed by a curve
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is proportional to its length. Thus, the power law is built into the prob-
lem, and it is not clear that this will generalize to problems without such
geometric constraints.

Finally, this model has been criticized because its results depend on
risk neutrality. As was pointed out in [71], if one puts risk aversion into
the utility function of the forest manager, the power laws disappear. That
is, suppose that instead of maximizing the average tree harvest, the forest
manager maximizes a risk averse utility function, such as a logarithm or a
power law, which gives a strong penalty for huge disasters. The resulting
distribution of forest fires no longer has a power law tail. This approach
was jokingly called Constrained Optimization with Limited Deviations or
“COLD”. It suggests that the power law in the original HOT solution is not
of such general origin.

The St. Petersburg paradox discussed earlier is another example that
involves power laws and utility maximization. While the power law distri-
bution of outcomes is consistent with utility maximization, the power law is
really inherent in the setup of the problem, and does not depend on what
utility one maximizes in deciding what the bet is worth. The power law
came about simply because successively doubling the bet leads to extremely
fat tails in the distribution of payoffs. In contrast, the power law in the HOT
forest fire model depends on the maximization of yield (but disappears with
risk aversion).

While maximization principles offer an intriguing possibility to explain
the pervasive nature of power laws in economics, the details of how this
would be done, and whether or not it is economically plausible, remains to
be investigated.

6.4 Multiplicative processes

Simple multiplicative random processes can generate fat tailed distributions.
Multiplicative random processes naturally occur in many different settings,
such as models of feedback, growth, and fracture, and they are a common
cause of power laws. A pure multiplicative process gives a log-normal dis-
tribution, which is fat tailed but is not a power law. However, small mod-
ifications such as the inclusion of a barrier or an additive term give rise to
true power law distributions. Thus log-normal and power law distributions
are closely related.

Consider a simple multiplicative process of the form

x(t+ 1) = a(t)x(t) (11)
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where x(0) > 0 and a(t) are positive random numbers. If we iterate the
process its solution is trivially written as

x(t) =
t−1∏
i=0

a(i)x(0). (12)

Taking logarithms this becomes

log x(t) =
t−1∑
i=0

log a(i) + log x(0). (13)

Providing the second moment of log a(i) exists and the a(i) are sufficiently
independent of each other, in the large time limit log x(t) will approach a
normal distribution, i.e. x(t) will approach a log-normal distribution

f(x) =
1√

2πσx
e−(log x−µ)2/2σ2

. (14)

µ and σ2 are the mean and variance of the associated normal process. Taking
logarithms this becomes

log f(x) = −(log x)2

2σ2
+ (

µ

σ2
− 1) log x+ constant terms. (15)

In the limit x→∞ the quadratic term dominates, so this distribution is of
Gumbel type – it does not have a power law tail. However, if the variance
is sufficiently large, then the coefficient of the quadratic term is small while
the coefficient of the linear term is of order one. When this happens a
lognormal distribution can have approximate power law scaling over many
decades, and as a result lognormals are easily confused with power laws.

Note that in general a pure multiplicative process requires a normaliza-
tion of scale for its log-normality to become apparent. This is of course
already true for an additive random walk, but because of the exponential
growth or contraction of a multiplicative process this problem is much more
severe. If E[log a(t)] < 0 then the distribution exponentially collapses to
a spike at the origin, and if E[log a(t)] > 0 it exponentially blows up. To
see the lognormal shape of the distribution one must use an appropriately
contracting or expanding scale.

In the case where E[log a(t)] < 0 a pure multiplicative random process
can be turned from a lognormal into a power law by simply imposing a bar-
rier to repel x(t) away from zero. The power law can be understood by taking
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logarithms and taking advantage of classical results on random walks with
barriers. distribution is normally distributed. The condition E[log a(t)] < 0
guarantees that x(t) tends to drift to the left. However, in the presence
of a barrier it will pile up against it, and from a standard result the nor-
mal distribution for an unrestricted additive random walk is replaced by an
exponential probability density of the form P (x) = µe−µ(log x−b), where b
is the logarithm of the position of the barrier and /logx ≥ b. Exponenti-
ating to undo the logarithmic transformation gives a power law with tail
exponent α = µ + 1, as shown in equation 8. A model that is essentially
equivalent to this was originally introduced by Champernowne to describe
income distribution in 1953 [21].

Another small modification that results in a power law is the addition
of an additive term

x(t+ 1) = a(t)x(t) + b(t), (16)

where both a(t) and b(t) are positive random numbers. This is called a
Kesten process [41]. It is power law distributed providing E[log a] < 1 and
there are values of t with a(t) > 1. Intuitively, the first condition ensures
that the process is attracted to the origin. The inclusion of the additive
term makes sure that the process does not collapse to the origin, and the
condition that occasionally a(t) > 1 creates intermittent bursts that form
the fat tail. Thus we see that this is closely related to the pure multiplicative
process with a barrier. The tail exponent of the Kesten process depends on
the relative sizes of the additive and multiplicative terms. Processes of this
type are very common, describing for example random walks in random
environments, a model of cultural evolution, and a simple stochastic model
for the distribution of wealth. The Kesten process is nothing but a discrete
time special case of the Langevin equation, which is a standard model in
statistical physics. In fact, Tsallis and XXX have shown that under fairly
broad conditions, Langevin equations (in continuous time) give equation 10
as a solution, i.e. the asymptotic probability distribution for a Langevin
process maximizes the Tsallis entropy.

This last result demonstrates how maximization arguments can be com-
patible with a more detailed microscopic prescription, and justifies what
might otherwise seem like the ad hoc nature of the Tsallis entropy. When
it is possible, the latter is of course always preferable, since it forces one
to identify the source of the nonlinearities, and produces more detailed and
hence more testable predictions.
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6.5 Mixtures of distributions

A mixture of distributions combines individual distributions with different
scale parameters, i.e.

f(x) =
∫
g(σ)pσ(x)dσ (17)

where σ is the scale parameter (e.g. the standard deviation) of each distribu-
tion pσ(x). This is often offered as an explanation for fat tails in the standard
equilibrium model of price fluctuations: Since the information arrival rate
varies, the standard deviation of price fluctuations varies. Even though the
instantaneous distribution at any given time might be a thin-tailed normal
distribution, when these are blended together for different times, the result
is a fat-tailed distribution. Therefore, according to this explanation, the fat
tails of price fluctuations come entirely from non-uniformity in information
arrival, creating a mixture of different volatilities in price changes.

This explanation misses the mark in several ways. First, as mentioned
already, there is good evidence that other factors are more important than
information arrival in determining the volatility of prices. In addition, it is
incomplete; while any mixture will fatten the tails, not all mixtures do so
sufficiently to create a power law. In general the condition that a mixture
function g(σ) generates a particular target function f(x) is quite restrictive.

For instance, what mixture function will combine exponential distribu-
tions to get a power law?

f(x) =
∫
g(σ)e−σxdσ (18)

It is possible to show that the function g(σ) that will give a power law
with tail exponent α is g(σ) ∼ 1/σ2+α. To get a power law by combining
exponentials it is necessary for the mixture function to be itself a power law.
Sornette has shown that this result applies to any function with tails that die
out sufficiently fast [82]. Therefore this result applies to mixtures of normal
distributions, and makes it clear that a power law mixture is required. To
explain the power law nature of price fluctuations in terms of variation in
the information arrival rate, one needs to explain why information arrival
has a power law distribution in the first place.

There do in fact exist non-power law mixtures of thin-tailed distribu-
tions that give rise to power laws. An important example is an exponen-
tially weighted mixture of log-normal distributions. This occurs naturally,
for example, in the context of a multiplicative process with a distribution of
stopping times. Consider the process x(i+ 1) = a(i)x(i) of Section 6.4, but
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now assume that the stopping time t is itself an exponentially distributed
random variable with density function p(t) = λe−λt. For any fixed t the
distribution is lognormally distributed, but when we have a mixture of stop-
ping times we have to weight each log-normal by its stopping time, which
also affects the scale parameter of the log-normal. It is straightforward to
show that this integral gives is a power law, called the double Pareto dis-
tribution [79]. The name is chosen because this distribution actually has a
power law tail in both limits x → 0 and x → ∞, though with different tail
exponents (which solves the normalization problem). The exponents depend
on the parameters of the multiplicative process, as well as the scale λ of the
stopping time16.

This mechanism can be used to provide another possible explanation of
Zipf’s law for word frequencies. Suppose that monkeys type randomly on a
keyboard with M characters plus a space. Assume they hit the space bar
with probability s, and they type non-space characters with probabilities pi
that differ for each character. Then the probability of typing any particular
word of length l will be approximately log-normally distributed for large l.
The probability that a word has length l is (1 − s)ls, which for large l is
roughly exponentially decreasing with l. Thus, approximating the sums by
an integral, the distribution of word frequencies is a double Pareto distri-
bution. This argument was originally given by Miller [67] (but under the
assumption that all non-space characters have the same probability, which
also gives a power law with α = 1/(1− logM (1−s)), where M is the number
of non-space characters.

6.6 Preferential attachment

Preferential attachment was originally introduced by Yule to explain the dis-
tribution of species within genera of plants, and is perhaps the oldest known
mechanism for generating a power law. Yule’s idea was that mutuations
are proportional to the number of species, so a genus with more species has
more mutuations and thus grows at a faster rate, giving rise to a very fat
tailed distribution. The argument was developed by Simon and proposed
as a possible explanation for a variety of other phenomena, including Zipf’s
law for the distribution of word frequencies, the distribution of numbers
of papers that a scientist publishes, the distribution of city sizes, and the
distribution of incomes.

16The tail exponents are the roots α and −β of the equation σ2z2 +(2µ−σ2)z−2λ = 0,
where α, β > 0. The tail at zero scales as xβ , and the tail at infinity as x−α.
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We will summarize the basic argument in the context of Zipf’s law for
word frequencies, but with changes of a few details the same argument can
be applied to a variety of examples (including more recently the distribution
of sites to a given link on the World Wide Web [10, 68]). Consider a partially
completed text that is t words long. Assume that with probability λ an au-
thor chooses a new word at random, and with probability 1− λ she chooses
a previously used word, with probability proportional to the previous num-
ber of occurrences of that word. Following the argument originally given by
Simon [80, 39] this gives a power law distribution of word frequencies. This
can be derived via a master equation as follows:

For a text of length t, let Nj(t) be the number of words that occur j
times. (We will drop the argument t when it is obvious). For example, if
“the”, “of”, and “to” are the only words that appear one hundred times,
then N100 = 3. What is the probability that Nj will increase, i.e. that
Nj(t+1) = Nj(t)+1? Since at time t+1 the next word occurs j times, at time
t it must have occurred j−1 times. If the word already exists in the text, the
probability that a word that occurs j−1 times will be chosen is proportional
to the number of words that occur j − 1 times, weighted by how much it
already occurs. Therefore, when j > 1 the probability that Nj increases
when the next word is chosen is proportional to (j − 1)Nj−1. Similarly the
probability that Nj decreases (due to a word that previously occurred j
times being chosen, so that it now occurs j + 1 times) is proportional to
jNj . Putting this together gives

E[Nj(t+ 1)−Nj(t)] = K(t)((j − 1)Nj−1(t)− jNj(t)). (19)

where K(t) is a normalization constant that turns these into proper proba-
bilities. The case j = 1 has to be handled separately. In this case the rate of
change is just the probability of a new word being chosen, times the prob-
ability that a word that occurs once at t is chosen (so that it now appears
twice, decreasing N1). This gives

E[Nj(t+ 1)−Nj(t)] = λ−K(t)N1(t).

The normalization constant can be computed from the condition that the
probability that a previously used word is chosen is 1−λ. It therefore satisfies
the normalization condition

∑
i = 1kK(t)jNj = K(t)

∑
i = 1kjNj = 1− λ.

Since jNj(t) is the number of words that appear j times, multiplied by the
number of times each word occurs, the sum over all j is just the total number
of words in the text, i.e.

∑
i = 1kjNj = t. This implies K(t) = (1− λ)/t.

Suppose we make the steady state assumption that for large t the word
frequencies converge to constant values rj , i.e. words that occur in the text
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Nj times constitute a fraction rj of the total number of words in the text.
This means that the average number of occurrences of each word grows as
E[Nj(t)] = rjt, which implies that E[Nj(t + 1) − Nj(t)] = rj . With some
rearranging of terms, after plugging in the expression for the normalization
constant K(t), equation 19 becomes

rj
rj−1

=
(1− λ)(j − 1)
1 + (1− λ)j

.

If we assume that j is large and expand the denominator to first order
(neglecting terms of size 1/j2 and smaller), this can be approximated as

rj
rj−1

≈ 1− (2− λ)
(1− λ)

(
1
j

).

This has the solution rj = r0j
−(2−λ)/(1−λ), which is a power law with tail

exponent α = (2 − λ)/(1 − λ) − 1 = 1/(1 − λ). When λ is small this gives
a tail exponent a little bit greater than one, which matches the empirical
result.

6.7 Dimensional constraints

There are many cases where dimensional constraints, such as the geometry
of space, dictate the existence of power laws. This can be understood in
terms of dimensional analysis, which is based on the principle that scientific
laws should not depend on arbitrariness that is inherent in the choice of
units of measurement. It shouldn’t matter whether we measure lengths in
meters or yards – while changing units will affect the measurement of any
quantity that is based on length, this dependence is trivial, and anything
that doesn’t depend on length should remain the same. The basic form
of of a physical law does not depend on the units. While this may seem
like a trivial statement, in fact it places important restrictions on the space
of possible solutions and can sometimes be used to get correct answers to
problems without going through the effort of deriving a solution from first
principles. Although dimensional analysis has normally used in engineering
and the physical sciences, recent work has shown that dimensional analysis
can also be useful in economics [23, 81, ?]. Since dimensional analysis is
essentially a technique exploiting scale invariance, it is not surprising that
dimensional constraints naturally give power laws.

The connection between power laws and the constraints of dimensionality
can be derived from the requirement that their is no distinguished systems
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of units, i.e. that there is no special unit of measure that is intrinsically
superior to any other [11]. Assume that we choose a system of fundamental
quantities, such as length, mass and time in physics, such that by using
combinations of them they are sufficient to describe any quantity φ that we
wish to measure. We can now consider how φ will change if we use units
that differ by factors of L, M or T from the original units. The dimension
function [φ], which is traditionally denoted by brackets, gives the factor by
which φ will change. For example, for the velocity v the dimension function
[v] = L/T .

The reason that power laws emerge naturally from dimensional con-
straints is because the dimension function is always a power law monomial.
To see why, suppose there is a quantity that has a value a0 in an origi-
nal system of units. Now compare its values in two other systems of units
differing by factors (L1,M1, T1) and (L2,M2, T2), where it takes on values
a1 = a0φ(L1,M1, T1) and a2 = φ(L1,M1, T1). Thus

a1

a2
=
φ(L1,M1, T1)
φ(L2,M2, T2)

.

Since no system of units is preferred, we can equivalently assume that system
1 is the original system of units, in which case it is also true that

a2 = a1φ(L2/L1,M2/M1, T2/T1).

Combining these two equations gives the functional equation

φ(L1,M1, T1)
φ(L2,M2, T2)

= φ(L2/L1,M2/M1, T2/T1).

Assuming that φ is differentiable it is possible to show that the only possible
solutions are of the form

φ = LαMβT γ

where α, β and γ are constants. That this is not obvious can be demon-
strated by assuming that there is a preferred system of units, which leads
to an functional equation that does not have power law monomials as its
solution.

This relationship has important consequences in generating power laws,
as becomes evident from the fundamental theorem of dimensional analysis,
called the Π theorem. Consider some quantity a that is a function of n
parameters. A set of parameters (a1, . . . , ak) are said to have independent
dimensions if none of them has dimensions that can be represented in terms

40



of a product of powers of the dimensions of the others. It is always possible
to write a function of n parameters in the form

a = f(a1, . . . , ak, ak+1, . . . , an),

where the first k parameters have independent dimensions, and the dimen-
sions of parameters ak+1, . . . , an can be expressed as products of the dimen-
sions of the parameters a1, . . . , ak, and 0 ≤ k ≤ n. Then, by making a series
of transformations to dimensionless parameters, it can be shown that this
can generally be rewritten in the form

f(a1, . . . , an) = ap1 · · · a
r
kΦ(

ak+1

a
pk+1

1 · · · ark+1
n

, . . . ,
an

apn1 · · · a
rn
k

).

The sequence of positive constants p, . . . , r of length k is chosen in or-
der to make the product ap1 · · · ark have the same dimensionality as f , and
the sequences of positive constants {pk+1, . . . , rk+1}, . . . , {pn, . . . , rn}, which
are also each of length k, are chosen to make the transformed parameters
ak+1/(a

pk+1

1 · · · ark+1
n ), . . . , an/(a

pn
1 · · · a

rn
k ) dimensionless.

This relation demonstrates that any quantity that describes a scientific
law expressing relations between measurable quantities possess the property
of generalized homogeneity. The product ap1 · · · ark trivially reflects the di-
mensionality of f , and Φ is a dimensionless function that contains all the
nontrivial behavior. If we move the product ap1 · · · ark to the left hand side
of the equation, then it makes it clear that the effect has been to transform
a dimensional relationship into a dimensionless relationship, confirming by
construction our initial requirement that sensible scientific laws should not
depend on arbitrariness in the choicd of units. This representation also re-
duces the dimensionality and hence the complexity of the solution. In the
best circumstances k = n and Φ is a constant. More typically k < n, but
this is still extremely useful, since it reduces the dimensionality of the so-
lution from n to n − k. For a problem such as fluid flow in a pipe, where
n = 4 and k = 3, this can dramatically simplify analysis.

The product ap1 · · · ark is a power law in each of the variables ai. If Φ is
a slowly varying function of all of its arguments in one or both of its limits
then this gives a power law in each of the variables a1 . . . ak. This happens,
for example, when all the variables have independent dimensions (k = n)
and thus Φ = constant. Of course, it is also possible that Φ is not a slowly
varying function, in which case the power law behavior will be broken (e.g.
if Φ is an exponential) or modified (if Φ is a power law).

The power laws that are generated by dimensional constraints of simple
geometric quantities typically have exponents p, . . . , r that are integers or
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ratios of small integers. This is because the quantities we are interested
in are usually constructed from the fundamental units in simple ways, e.g.
because quantities like volume or area, are integer powers of the fundamental
unit of distance. However, for problems with more complicated geometry,
e.g. fractals, the powers can be more complex. For example, recent work
has shown that the 3/4 power that underlies the scaling of metabolic rate
vs. body mass can be explained in terms of the hierarchical fractal geometry
of the cardiovascular system [83, 84].

Although dimensional analysis is widely used in the physical sciences
and engineering, economists have typically never heard of it. Recently, how-
ever, it has been shown to be useful for financial economics in the context
of the continuous double auction, for understanding the bid-ask spread or
the volatility as a function of order flow [23, 81]. For this problem the fun-
damental dimensional quantities were taken to be price, shares, and time,
with corresponding scaling factors P , S, and T . There are five parameters
in the model, which is discussed in more detail in Section ??. The three
order flow parameters are market order rate µ, with [µ] = S/T , limit order
rate α, with [α] = S/(PT ), and order cancellation rateδ, with [δ] = 1/T .
The two discreteness parameters are the typical order size σ and the tick size
∆p. Quantities of interest include the bid-ask spread s, defined as the differ-
ence between the best selling price and the best buying price, and the price
diffusion rate, defined as the diffusion rate for the random walk underlying
prices, which is the driver of volatility. The bid-ask spread s, for example,
has dimensions of price. As a result, by expressing the dimensional scaling
in terms of the three order flow parameters and applying the Π theorem the
average value of the spread can be written in the form

E[s] =
µ

α
Φs(

σ

pc
,
∆p
Nc

), (20)

where pc = µ/α is the unique characteristic price scale that can be con-
structed from the three order flow parameters and Nc = µ/δ is the unique
characteristic quantity of shares. The use of dimensional analysis thus re-
duces the number of free parameters from five to two, and makes the ar-
guments of Φs nondimensional. Through more complicated analysis and
simulation it can be shown that Φs depends more strongly on σ/pc than
∆p/Nc, and that in the limit ∆p/Nc → 0 and σ/pc → 0 it approaches a
constant. Thus, in this limit the spread is described by a power law, albeit
a simple one.

Similarly for the price diffusion rate D, which has dimensions [D] =
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P 2/T , can be written as

D =
µ2δ

α2
ΦD(

σ

pc
,
∆p
Nc

). (21)

In this case, through simulation it is possible to demonstrate that ΦD also
depends more strongly on σ/pc than ∆p/Nc. In the limit p/Nc → 0 and
t→ 0 (describing price diffusion on short time scales), ΦD is a power law of
the form ΦD = (σ/pc)−1/2. As a result, in this limit the diffusion rate is a
power law function of its arguments, of the form ΦD ∼ µ5/2δ1/2/(α2σ1/2).

These relations have been tested on data from the London Stock Ex-
change and shown to be in remarkably good agreement [32]. This demon-
strates that dimensional analysis is useful in economics, demonstrates how
some power laws might be explained in economics, and perhaps more im-
portantly, shows the power of new approaches to economic modeling. Note,
though, that this does not explain the power law tails of prices, which seems
to be a more complicated phenomenon [33, 32, 31].

6.8 Critical points and deterministic dynamics

The dynamical mechanisms for producing power laws that we have discussed
so far are stochastic processes, in which noise is supplied by an external
source and then amplified and filtered, e.g. by a simple multiplicative pro-
cess or a growth process such as preferential attachment. Under appropriate
conditions it is also possible to generate power laws from deterministic dy-
namics. This occurs when the dynamics has a critical point. This can
happen at a bifurcation, in which case the power law occurs only for the
special parameter values corresponding to the bifurcation. But there are
also more robust mechanisms such as self-organized criticality, which keep
a system close to a critical point for a range of parameters. Critical points
can amplify noise provided by an external source, but the amplification is
potentially infinite, so that even an infinitesimal noise source is amplified to
macroscopic proportions. In this case the properties of the resulting noise are
independent of the noise source, and are purely properties of the dynamics.

Critical points occur at the boundary between qualitatively different
types of behavior. In the classic examples in physics critical points occur at
the transition between two states of matter, such as the transition from a
solid to a liquid or a liquid to a gas. Critical points also occur more generally
in dynamical systems where there is a transition from locally stable to locally
unstable motion, such as the transition from a fixed pont to a limit cycle
or a limit cycle to chaos. To see why critical points give rise to power
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laws, consider a nonlinear dynamical system of the form dx/dt = F (x, c),
where c is a control parameter that continuously changes the functional
form of a smooth nonlinear function F . Suppose that for some parameter
interval there is a stable fixed point F (x0) = 0, which is an attractor of the
dynamics. For small perturbations of the solution near the fixed point we
can get a good approximate solution by expanding F in a Taylor’s series
around x0 and neglecting everything except the leading linear term. This
gives a solution which in one dimension17 is of the form x(t) = aeλt. As long
as λ 6= 0, the linear solution is the leading order solution, and will provide
a reasonable approximation in the neighborhood of x0. However, suppose
c is varied to a critical value c0 where the dynamics are no longer linearly
stable. In this case the linear approximation to F (x) vanishes, so that it
is no longer the leading order term in the Taylor approximation of F (x).
To study the stability of the dynamics at this point we are forced to go to
higher order, in which case the leading order approximation to the dynamics
is generically of the form dx/dt = αxβ, where β > 1. This has a solution of
the form

x(t) = At1/(β−1). (22)

Thus, whereas when the system is either stable or unstable the leading order
solution is an exponential, at the critical point the leading order solution
is a power law. This is the underlying reason why critical points play an
important role in generating power laws.

An important special property of the critical point is the lack of a char-
acteristic timescale. This is in contrast to the stable or unstable case, where
the linearized solution is x(t) = aeλt. Since the argument of an exponential
function has to be dimensionless, λ necessarily has dimensions of 1/(time),
and 1/|λ| can be regarded as the characteristic timescale of the instability.
For the critical point solution, in contrast, the exponent is 1/(β − 1), and
β is dimensionless. The solution x(t) = At1/(β−1) is a power law, with no
characteristic timescale associated with the solution.

One of the ways power laws manifest themselves at critical points is in
terms of intermittency. This was demonstrated by Pomeau and Manneville
[76], who showed how at a critical point a dynamical system could display
bursts of chaotic behavior, punctuated by periods of laminar (nearly peri-
odic) behavior of indeterminant length. This can be simply illustrated with

17We are being somewhat inconsistent by assuming one dimension, since chaotic behav-
ior in a continuous system requires at least three dimensions. The same basic discussion
applies in higher dimensions by writing the solutions in matrix form and replacing λ by
the leading eigenvalue.
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the deterministic mapping

xt+1 = (1 + ε)xt + (1− ε)x2
t (mod 1)

For epsilon > 0 this map displays chaotic behavior. However, near xt = 0
the quadratic term is small, and so xt+1 ≈ (1 + ε)xt. When ε is small, it is
also the case that xt+1 ≈ xt. Thus, starting from an initial condition close
to the origin, subsequent iterations of the map change very slowly, and may
spend many iterations almost without changing. This is called the laminar
phase. The length of time the laminar phase persists depends on the value of
ε, and also on how close the initial condition is to zero. When xt finally gets
far enough away from the origin it experience a burst of chaotic behavior,
but eventually (as if by chance) a new value close to zero will be generated,
and there is another laminar phase. When ε = 0 Manneville showed that
the length τ of the laminar phase are distributed as a power law of the
form P (τ) ∼ 1/τ . As a consequence of this, the power spectrum S(f) (the
average of the square of the absolute value of the Fourier transform of xt)
behaves in the limit f → 0 S(f) ∼ 1/f , where f is the frequency of the
Fourier transform. Such power law behavior occurs for a bifurcation of any
dynamical system in which the eigenvalue becomes positive by moving along
the real axis.

Critical points thus provide a mechanism for generating power law be-
havior in a dynamical system, but this mechanism is limited by the fact
that it pertains only near bifurcations. Bifurcations typically occur only
at isolated points in parameter space, and form a set of measure zero. A
set of parameters drawn at random is unlikely to yield a critical point, and
variations of the parameters will typically the power law associated with
the critical point disappear. Thus, in order to explain power laws in terms
of critical points, it is necessary to find mechanisms that make the critical
point robust, i.e. that maintain it at through a wide range of parameter
values, at least as an approximation.

One example of this is due to spatio-temporal intermittency, and was
discovered by Keeler and Farmer [40]. In the system of coupled maps that
they studied the dynamics organizes itself into regions of high frequency
chaotic behavior and regions of low frequency laminar behavior, like the
laminar and chaotic regions in Pomeau-Manneville intermittency, except
that they coexist at the same time, but at different points in space – it is
as though there were a smoothly varying “local” parameter determining the
dynamics in each region, with small variations of the value of that parameter
around the critical point. The fronts separating these regions move, but their
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motion is extremely slow. As a result, there is an eigenvalue associated with
the motion of these fronts that is very near zero. This behavior persists
across a wide range of parameter values. As a result, the system has a robust
power law, with a power spectrum that behaves as 1/f for frequencies f near
zero. Such behavior is also observed in many situations in fluids near the
transition to turbulence.

Another mechanism for making fixed points robust, called self-organized
criticality, was introduced by Bak, Tang, and Weisenfeld [9]. Basic idea
is that some phenomena, by their very nature maintain themselves near a
critical point The classic example is a sandpile. Consider a thin stream of
sand falling vertically, for example in an hourglass. A sandpile will build
up underneath, and its sides will steepen until it becomes too steep, and
then there is an avalanche. It will then steepen again until there is another
avalance, and so on. The sandpile maintains itself near a critical state,
through dynamics that are inherent to the physical constraints of the situa-
tion. Bak, Tang and Weisenfeld build a deterministic model of the sandpile
in terms of a cellular automaton, and showed that it displayed approximate
power law tails. Though this was later shown to not be a true power law,
more detailed models of the sandpile show true power laws, and models of
power law behavior in many other systems have been found based on this
mechanism.

The suggestion has been made that arbitrage efficiency may be a self-
organising critical mechanism. The basic idea is that arbitrageurs tend to
drive a financial economy to an efficient state. However, once it gets too
close to efficiency, profits become very low, and in the presence of negative
fluctuations there can be avalanches of losses driving many arbitrageurs out
of business. After an avalanche, arbitraguers re-enter the market and once
again more the market toward efficiency. Under this theory the power laws
are thus explained as fluctuations around the point of market efficiency. We
will describe such a scenario in more detail in Section ??.

One of the reason that physicists find power laws associated with critical
points particularly interesting is because of universality. There are many
situations, both in dynamical systems theory and in statistical mechanics,
in which many of the properties of the dynamics around critical points are
independent of the details of the underlying dynamical system. For exam-
ple, bifurcations can be organized into groups, and the exponent β at the
critical point in equation 22 may be the same for many systems in the same
group, even though many other aspects of the system are different. One
consequence of this is that the tail exponents of the associated power laws
take on a value that is the same for many different dynamical systems. It
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has been suggested, for example, that the exponent of price fluctuations may
have a tail exponent near three [75]. However, subsequent studies seem to
suggest that there are statistically significant variations in the tail exponents
of different assets [31].

6.9 “Trivial” mechanisms

We should not conclude our review of mechanisms for generating power
laws without mentioning a few “trivial” ways to make power laws. These
mechanisms are obvious (e.g. transforming by a power law) or inadequate
(e.g.

One obvious way to make a power law is through a power law transfor-
mation. Suppose, for example, that x is a variable with a density function
px(x) that approaches a constant in the limit x→ 0, i.e. limx→0 px(x) = K.
Let y be a power law transformation of x, of the form y = f(x) = x−β.
Then under conservation of probability, px(x)dx = py(y)dy,

py(y) =
px(f−1(y))
dy/dx

=
px(y−1/β)
βy1+1/β

≈ K

βy1+1/β
.

This is a power law with tail exponent α = 1/β. Note that a little algebra
shows that in the case where p(x) is a power law this is consistent with the
transformation rule for tail exponents given in equation 5.

It is not a surprise that a power law transformation can create a power
distributed variable, and for this reason we have labeled it as “trivial”. At
the same time, this mechanism generates power laws in many different phys-
ical problems, and cannot forgotten. The existence of a power law trans-
formation is not always obvious; a good example is Student’s t distribution
with n degrees of freedom, which is a power law with tail exponent α = n
[82].

As already discussed in Section 2, sums of random variables converge
to the Levy stable distribution, which is a power law, when the second
moments of the variables fail to exist. This is often given as a mechanism
for generating power laws. However, this mechanism doesn’t really generate
a power law, since the fact that the second moment does not exist implies
that the tail exponent of the random variable being combined already has a
tail exponent 0 < α < 2. Thus, by definition it is already a power law, with
a tail exponent equal to that of the Levy distribution.

Another simple mechanism for making a power law is the ability of a
dynamical system to act as a low pass noise filter with a power law cutoff.
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Consider a dynamical system with added noise, of the form
dx

dt
= f(x(t)) + n(t)

where f is a smooth function and n(t) is a white noise process. Suppose we
Fourier transform both sides of the equation. Letting X(ω) be the Fourier
transform of x(t), where ω is the frquency, the Fourier transform of the
derivative dx/dt is iω. The power spectrum is the average of the square of
the absolute value of the Fourier transform. Since f is a smooth function,
in the limit ω → ∞ its power spectrum decreases faster than a power law,
whereas since the noise is white, its power spectrum is constant. Thus, in
the high frequency limit

ω2〈|X(ω)|2〉 = constant.

This implies that the power spectrum S(ω) = 〈|X(ω)|2〉 falls off as 1/ω2

in the high frequency limit. This can be extended for differential equations
of order m to show that in the general case the power spectrum scales as
1/ω2m in the high frequency limit.

The argument above is the basic idea behind the method used to design
filters, such as those used in audio equipment to reduce high frequency
noise. A power law in the high frequency behavior is not very interesting,
as it has no dramatic effects. Power laws at low frequencies, such as those
discussed in Section 6.8, as more dramatic, since they correspond to very
low frequency motions, such as intermittency or long-memory processs that
can easily be mistaken for nonstationarity. It is possible to construct high
pass noise filters, e.g. using a dynamical system with a critical point, or by
explicitly making a power law transformation.

The argument for why the power spectrum of an analytic function de-
creases rapidly at high frequencies is instructive concerning how power laws
are related to discontinuities. If f is a smooth function, then by definition
all its derivatives are bounded. Furthermore, analyticity implies that there
is a limit to how much any of the derivatives can change in any given period
of time. Thus, there is also an upper bound B ≥ 0 to the square of the
modulus of the Fourier transform at any given frequency. Thus, the fact
that the Fourier transform derivative of dmx/dtm is imωmX(ω) implies that

ω2m|X(ω)|2 ≤ B.

Thus the power spectrum of any smooth function f falls off faster than any
power in the limit ω →∞. To get a power law, then, requires some discon-
tinuity, either in the form of added noise (which is inherently discontinuous)
or compounded nonlinearities that produce effective discontinuities.
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7 Implications for economic theory

Once one accepts that power laws indeed occur in economics, then it be-
comes necessary to ask whether they can be explained within the equilibrium
framework. Of course, there is always the possibility that power laws are
imposed by factors that are exogenous to the economy, e.g. if information
arrival is a power law, then this will explain why clustered volatility scales
according to a power law. But this seems to be simply avoiding the problem,
and as already discussed, does not seem to fit the facts.

So far it seems that there is only moderate interest by economists in
verifying whether or not power laws exist, and very little work trying to
reconcile them with equilibrium. The only model that we are aware of along
these lines is a general equilibrium model for the business cycle proposed
by Nirei [72]. This is an SOC model in which the power law behavior is
driven by the granularity of the production mechanism. Many industries
require production facilities and infrastructure of at least a certain size.
When a new production facility is built or an old one is retired, production
makes a discrete jump, and the supply function is discontinuous. Such
changes in production can affect equilibrium allocations, driving the system
from one metastable equilibrium to another. The granularity of production
sizes causes a distribution of earnings with a power law distribution with
α = 1.5. Although this is a macroeconomic phenomenon, it is conceivable
that fluctuations in earnings could drive other power laws, for example in
price changes. More detailed empirical testing is needed.

In agent based models allowing non-equilibrium effects, in contrast, power
laws are common, even if there is still no good understanding of the neces-
sary and sufficient conditions for them to occur. The minority game pro-
vides a simple illustration (see Section ??). The prevalence of power laws
in such models suggests that the explanation may be a manifestation of
non-equilibrium behavior. Much of the modeling by physicists has so far
has been focused on trying to find models of financial markets capable of
generating power laws, but these models are still qualitative and it is still
not possible to claim that any of them explain the data in a fully convincing
manner.

The origin of power laws is a property of financial markets whose explana-
tion may have broader consequences in economics. For example, a proposed
explanation by Gabaix et al. [33] suggests that power laws in prices are
driven by power law fluctuations in transaction volume, which they suggest
are driven by a power law distribution of wealth, is caused by a Gibrat-style
multiplicative process mechanism (see Section 6.4). The conversion of tail
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exponents from transaction volumes to price fluctuations is postulated to
depend on a square root law behavior of the market impact function, which
relates trade size to changes in prices. This is derived based on an argument
involving minimization of transaction costs by financial brokers. In contrast,
other theories have suggested that the market impact function is an inherent
statistical property of the price formation dynamics which can be explained
by zero or low intelligence models. This is described in more detail in the
next section. In any case, it seems that power laws are a ubiquitous feature
of economic systems, and finding the correct explanation for them is likely
to be illuminating about other aspects of the financial economy.
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